January 29, 2014

- Bell-LaPadula
 - Example Instantiation
- Tranquility
- Controversy
 - System Z

Rules, States, and Conditions

Let ρ be a rule and $\rho(r, v) = (d, v')$, where v = (b, m, f, h) and v' = (b', m', f', h'). Then:

- 1. If $b \subseteq b', f = f'$, and v satisfies the simple security condition, then v' satisfies the simple security condition
- 2. If $b \subseteq b', f = f'$, and v satisfies the *-property, then v' satisfies the *-property
- 3. If $b \subseteq b', m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and *v* satisfies the ds-property, then *v*' satisfies the dsproperty

Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
 - determines if components of request are valid

January 29, 2014

get-read Rule

- Request $r = (get, s, o, \underline{r})$
 - *s* gets (requests) the right to read *o*
- Rule is $\rho_1(r, v)$: if $(r \neq \Delta(\rho_1))$ then $\rho_1(r, v) = (\underline{i}, v)$; else if $(f_s(s) \ dom \ f_o(o)$ and $[s \in S_T \ or \ f_c(s) \ dom \ f_o(o)]$ and $r \in m[s, o]$)

then $\rho_1(r, v) = (y, (b \cup \{ (s, o, \underline{r}) \}, m, f, h));$ else $\rho_1(r, v) = (\underline{n}, v);$

January 29, 2014

Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property
 - Proof
 - Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If v' = v, result is trivial. So let $v' = (b \cup \{ (s_2, o, \underline{r}) \}, m, f, h)$.

Proof

- Consider the simple security condition.
 - From the choice of v', either $b' b = \emptyset$ or $\{(s_2, o, \underline{\mathbf{r}})\}$
 - If $b'-b = \emptyset$, then { $(s_2, o, \underline{\mathbf{r}})$ } $\in b$, so v = v', proving that v' satisfies the simple security condition.
 - If $b'-b = \{ (s_2, o, \underline{r}) \}$, because the *get-read* rule requires that $f_c(s) \operatorname{dom} f_o(o)$, an earlier result says that v'satisfies the simple security condition.

Proof

- Consider the *-property.
 - Either $s_2 \in S_T$ or $f_c(s) dom f_o(o)$ from the definition of *get-read*
 - If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
 - If $f_c(s) \operatorname{dom} f_o(o)$, an earlier result says that v' satisfies the simple security condition.

Proof

- Consider the discretionary security property.
 - Conditions in the *get-read* rule require $\underline{\mathbf{r}} \in m[s, o]$ and either $b' - b = \emptyset$ or $\{(s_2, o, \underline{\mathbf{r}})\}$
 - If $b'-b = \emptyset$, then { (s_2, o, \underline{r}) } $\in b$, so v = v', proving that v' satisfies the simple security condition.
 - If $b'-b = \{ (s_2, o, \underline{r}) \}$, then $\{ (s_2, o, \underline{r}) \} \notin b$, an earlier result says that v' satisfies the ds-property.

give-read Rule

- Request $r = (s_1, give, s_2, o, \underline{r})$
 - s_1 gives (request to give) s_2 the (discretionary) right to read o
 - Rule: can be done if giver can alter parent of object
 - If object or parent is root of hierarchy, special authorization required
- Useful definitions
 - *root*(*o*): root object of hierarchy *h* containing *o*
 - parent(o): parent of o in h (so $o \in h(parent(o))$)
 - *canallow(s, o, v)*: *s* specially authorized to grant access when object or parent of object is root of hierarchy
 - $m \wedge m[s, o] \leftarrow \underline{r}$: access control matrix *m* with \underline{r} added to m[s, o]

give-read Rule

• Rule is
$$\rho_6(r, v)$$
:
if $(r \neq \Delta(\rho_6))$ **then** $\rho_6(r, v) = (\underline{i}, v)$;
else if $([o \neq root(o)$ **and** $parent(o) \neq root(o)$ **and** $parent(o) \in b(s_1:\underline{w})]$ **or**
 $[parent(o) = root(o)$ **and** $canallow(s_1, o, v)]$ **or**
 $[o = root(o)$ and $canallow(s_1, o, v)]$)
then $\rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow \underline{r}, f, h));$
else $\rho_1(r, v) = (\underline{n}, v);$

January 29, 2014

Security of Rule

- The *give-read* rule preserves the simple security condition, the *-property, and the ds-property
 - Proof: Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If v' = v, result is trivial. So let $v' = (b, m[s_2, o] \leftarrow \underline{r}, f, h)$. So b' = b, f' = f, m'[x, y] = m[x, y] for all $x \in S$ and $y \in O$ such that $x \neq s$ and $y \neq o$, and $m[s, o] \subseteq m'[s, o]$. Then by earlier result, v' satisfies the simple security condition, the *-property, and the ds-property.

Principle of Tranquility

- Raising object's security level
 - Information once available to some subjects is no longer available
 - Usually assume information has already been accessed, so this does nothing
- Lowering object's security level
 - The *declassification problem*
 - Essentially, a "write down" violating *-property
 - Solution: define set of trusted subjects that *sanitize* or remove sensitive information before security level lowered

Types of Tranquility

- Strong Tranquility
 - The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system
- Weak Tranquility
 - The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system

Example of Weak Tranquility

- Only one subject at TOP SECRET
- Document at CONFIDENTIAL
- New CONFIDENTIAL user to be added
 - User should not see document
- Raise document to SECRET
 - Subject still cannot write document
 - All security relationships unchanged

Declassification

- Lowering the security level of a document
 - Direct violation of the "no writes down" rule
 - May be necessary for legal or other purposes
- Declassification policy
 - Part of security policy covering this
 - Here, "secure" means classification changes to a lower level in accordance with declassification policy

Principles

- Principle of Semantic Consistency
- Principle of Occlusion
- Principle of Conservativity
- Principle of Monotonicity of Release

Principle of Semantic Consistency

- As long as the semantics of the parts of the system not involved in the declassification do not change, those parts may be changed without affecting system security
 - No leaking due to semantic incompatibilities
 - Delimited release: allow declassification, release of information only through specific channels ("escape hatches")

Principle of Occlusion

- Declassification mechanism cannot conceal *improper* lowering of security levels
 - Robust declassification property: attacker cannot use escape hatches to obtain information unless it is properly declassified

Other Principles

- Principle of Conservativity
 - Absent declassification, system is secure
- Principle of Monotonicity of Release
 - When declassification is performed in an authorized manner by authorized subjects, the system remains secure
- Idea: declassifying information in accordance with declassification policy does not affect security

Controversy

- McLean:
 - "value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold."
 - Basis: given assumptions known to be nonsecure, BST can prove a non-secure system to be secure

†-Property

 State (b, m, f, h) satisfies the [†]-property iff for each s ∈ S the following hold:

1. $b(s: \underline{a}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{a}) [f_c(s) dom f_o(o)]]$

2.
$$b(s: \underline{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]$$

3. $b(s: \underline{\mathbf{r}}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{\mathbf{r}}) [f_c(s) dom f_o(o)]]$

- Idea: for reading, subject dominates object; for writing, subject also dominates object
- Differs from *-property in that the mandatory condition for writing is reversed
 - For *-property, it's "object dominates subject"

Analogues

The following two theorems can be proved

- Σ(R, D, W, z₀) satisfies the †-property relative to S'⊆ S for any secure state z₀ iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies the following for every s ∈ S'
 - Every $(s, o, p) \in b' b$ satisfies the \dagger -property relative to S'
 - Every $(s, o, p) \in b$ that does not satisfy the \dagger -property relative to S' is not in b
- Σ(R, D, W, z₀) is a secure system if z₀ is a secure state and W satisfies the conditions for the simple security condition, the †-property, and the ds-property.

Problem

- This system is *clearly* non-secure!
 - Information flows from higher to lower because of the *†*-property

Discussion

- Role of Basic Security Theorem is to demonstrate that rules preserve security
- Key question: what is security?
 - Bell-LaPadula defines it in terms of 3 properties (simple security condition, *-property, discretionary security property)
 - Theorems are assertions about these properties
 - Rules describe changes to a *particular* system instantiating the model
 - Showing system is secure requires proving rules preserve these 3 properties

January 29, 2014

Rules and Model

- Nature of rules is irrelevant to model
- Model treats "security" as axiomatic
- Policy defines "security"
 - This instantiates the model
 - Policy reflects the requirements of the systems
- McLean's definition differs from Bell-LaPadula
 ... and is not suitable for a confidentiality policy
- Analysts cannot prove "security" definition is appropriate through the model

System Z

- System supporting weak tranquility
- On *any* request, system downgrades *all* subjects and objects to lowest level and adds the requested access permission
 - Let initial state satisfy all 3 properties
 - Successive states also satisfy all 3 properties
- Clearly not secure
 - On first request, everyone can read everything

Reformulation of Secure Action

- Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure
- BST holds with these modified versions of the 3 properties

January 29, 2014

Reconsider System Z

- Initial state:
 - subject s, object o
 - $C = \{\text{High}, \text{Low}\}, K = \{\text{All}\}$
- Take:
 - $f_c(s) = (Low, {All}), f_o(o) = (High, {All})$
 - $-m[s,o] = \{ \underline{\mathbf{w}} \}, \text{ and } b = \{ (s,o,\underline{\mathbf{w}}) \}.$
- *s* requests <u>r</u> access to *o*
- Now:

$$-f'_{o}(o) = (\text{Low}, \{\text{All}\})$$
$$-(s, o, \underline{\mathbf{r}}) \in b', m'[s, o] = \{\underline{\mathbf{r}}, \underline{\mathbf{w}}\}$$

January 29, 2014

Non-Secure System Z

- As $(s, o, \underline{r}) \in b' b$ and $f_o(o) \operatorname{dom} f_c(s)$, access added that was illegal in previous state
 - Under the new version of the Basic Security Theorem, the current state of System Z is not secure
 - But, as $f'_c(s) = f'_o(o)$ under the old version of the Basic Security Theorem, the current state of System Z is secure

January 29, 2014

Response: What Is Modeling?

- Two types of models
 - 1. Abstract physical phenomenon to fundamental properties
 - 2. Begin with axioms and construct a structure to examine the effects of those axioms
- Bell-LaPadula Model developed as a model in the first sense
 - McLean assumes it was developed as a model in the second sense

Reconciling System Z

- Different definitions of security create different results
 - Under one (original definition in Bell-LaPadula Model), System Z is secure
 - Under other (McLean's definition), System Z is not secure