
February 27, 2014	

•  Information flow	

•  Information flow policies	

– Non-transitive	

– Transitive non-lattice	

•  Compiler-based mechanisms	

•  Execution-based mechanisms	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #1	

Entropy and Information Flow	

•  Idea: info flows from x to y as a result of a
sequence of commands c if you can deduce
information about x before c from the value
in y after c	

•  Formally:	

–  s time before execution of c, t time after	

– H(xs | yt) < H(xs | ys)	

–  If no y at time s, then H(xs | yt) < H(xs)	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #2	

Example 1	

•  Command is x := y + z; where:	

–  0 ≤ y ≤ 7, equal probability	

–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each	

•  s state before command executed; t, after; so	

–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3	

–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5	

•  If you know xt, ys can have at most 3 values, so
H(ys | xt) = –3(1/3) lg (1/3) = lg 3	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #3	

Example 2	

•  Command is	

–  if x = 1 then y := 0 else y := 1;	

	
where:	

–  x, y equally likely to be either 0 or 1	

•  H(xs) = 1 as x can be either 0 or 1 with equal

probability	

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa	

–  Thus, H(xs | yt) = 0 < 1 = H(xs)	

•  So information flowed from x to y	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #4	

Implicit Flow of Information	

•  Information flows from x to y without an
explicit assignment of the form y := f(x)	

–  f(x) an arithmetic expression with variable x	

•  Example from previous slide:	

–  if x = 1 then y := 0	

	
else y := 1;	

•  So must look for implicit flows of
information to analyze program	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #5	

Notation	

•  x means class of x	

–  In Bell-LaPadula based system, same as “label

of security compartment to which x belongs”	

•  x ≤ y means “information can flow from an

element in class of x to an element in class
of y”	

– Or, “information with a label placing it in class

x can flow into class y”	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #6	

Information Flow Policies	

Information flow policies are usually:	

•  reflexive	

– So information can flow freely among members
of a single class	

•  transitive	

– So if information can flow from class 1 to class

2, and from class 2 to class 3, then information
can flow from class 1 to class 3	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #7	

Non-Transitive Policies	

•  Betty is a confident of Anne	

•  Cathy is a confident of Betty	

– With transitivity, information flows from Anne
to Betty to Cathy	

•  Anne confides to Betty she is having an
affair with Cathy’s spouse	

– Transitivity undesirable in this case, probably	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #8	

Transitive Non-Lattice Policies	

•  2 faculty members co-PIs on a grant	

–  Equal authority; neither can overrule the other	

•  Grad students report to faculty members	

•  Undergrads report to grad students	

•  Information flow relation is:	

–  Reflexive and transitive	

•  But some elements (people) have no “least upper

bound” element	

–  What is it for the faculty members?	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #9	

Confidentiality Policy Model	

•  Lattice model fails in previous 2 cases	

•  Generalize: policy I = (SCI, ≤I, joinI):	

–  SCI set of security classes	

–  ≤I ordering relation on elements of SCI	

–  joinI function to combine two elements of SCI	
	

•  Example: Bell-LaPadula Model	

–  SCI set of security compartments	

–  ≤I ordering relation dom	

–  joinI function lub	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #10	

Confinement Flow Model	

•  (I, O, confine, →)	

–  I = (SCI, ≤I, joinI)	

–  O set of entities	

–  →: O×O with (a, b) ∈ → (written a → b) iff

information can flow from a to b	

–  for a ∈ O, confine(a) = (aL, aU) ∈ SCI×SCI with aL ≤I aU	

•  Interpretation: for a ∈ O, if x ≤I aU, info can flow from x to a,
and if aL ≤I x, info can flow from a to x	

•  So aL lowest classification of info allowed to flow out of a, and
aU highest classification of info allowed to flow into a 	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #11	

Assumptions, etc.	

•  Assumes: object can change security classes	

– So, variable can take on security class of its

data	

•  Object x has security class x currently	

•  Note transitivity not required	

•  If information can flow from a to b, then b

dominates a under ordering of policy I:	

(∀ a, b ∈ O)[a → b ⇒ aL ≤I bU]	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #12	

Example 1	

•  SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and

S ≤I TS	

•  a, b, c ∈ O	

–  confine(a) = [C, C]	

–  confine(b) = [S, S]	

–  confine(c) = [TS, TS]	

•  Secure information flows: a → b, a → c, b → c	

–  As aL ≤I bU, aL ≤I cU, bL ≤I cU	

–  Transitivity holds	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #13	

Example 2	

•  SCI, ≤I as in Example 1	

•  x, y, z ∈ O	

–  confine(x) = [C, C]	

–  confine(y) = [S, S]	

–  confine(z) = [C, TS]	

•  Secure information flows: x → y, x → z, y → z,
z → x, z → y	

–  As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU	

–  Transitivity does not hold	

•  y → z and z → x, but y → x is false, because yL ≤I xU is false	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #14	

Transitive Non-Lattice Policies	

•  Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q
is transitive and reflexive over SQ	

•  How to handle information flow?	

– Define a partially ordered set containing quasi-

ordered set	

– Add least upper bound, greatest lower bound to

partially ordered set	

–  It’s a lattice, so apply lattice rules!	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #15	

In Detail …	

•  ∀x ∈ SQ: let f(x) = { y | y ∈ SQ ∧ y ≤Q x }	

–  Define SQP = { f(x) | x ∈ SQ }	

–  Define ≤QP = { (x, y) | x, y ∈ SQP ∧ x ⊆ y }	

•  SQP partially ordered set under ≤QP 	

•  f preserves order, so y ≤Q x iff f(x) ≤QP f(y)	

•  Add upper, lower bounds	

–  SQPʹ′ = SQP ∪ { SQ, ∅ }	

–  Upper bound ub(x, y) = { z | z ∈ SQP ∧ x ⊆ z ∧ y ⊆ z }	

–  Least upper bound lub(x, y) = ∩ub(x, y)	

•  Lower bound, greatest lower bound defined analogously	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #16	

And the Policy Is …	

•  Now (SQPʹ′, ≤QP) is lattice	

•  Information flow policy on quasi-ordered

set emulates that of this lattice!	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #17	

Non-Transitive Flow Policies	

•  Government agency information flow policy
(on next slide)	

•  Entities public relations officers PRO,
analysts A, spymasters S	

–  confine(PRO) = { public, analysis }	

–  confine(A) = { analysis, top-level }	

–  confine(S) = { covert, top-level }	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #18	

Information Flow	

•  By confinement flow

model:	

–  PRO ≤ A, A ≤ PRO	

–  PRO ≤ S	

–  A ≤ S, S ≤ A	

•  Data cannot flow to
public relations
officers; not transitive	

–  S ≤ A, A ≤ PRO	

–  S ≤ PRO is false	

top-level	

analysis	
 covert	

public	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #19	

Transforming Into Lattice	

•  Rough idea: apply a special mapping to generate a
subset of the power set of the set of classes	

–  Done so this set is partially ordered	

–  Means it can be transformed into a lattice	

•  Can show this mapping preserves ordering relation	

–  So it preserves non-orderings and non-transitivity of

elements corresponding to those of original set	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #20	

Dual Mapping	

•  R = (SCR, ≤R, joinR) reflexive info flow policy	

•  P = (SP, ≤P) ordered set	

–  Define dual mapping functions lR, hR: SCR→SP	

•  lR(x) = { x }	

•  hR(x) = { y | y ∈ SCR ∧ y ≤R x }	

–  SP contains subsets of SCR; ≤P subset relation	

–  Dual mapping function order preserving iff	

(∀a, b ∈ SCR)[a ≤R b ⇔ lR(a) ≤P hR(b)]	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #21	

Theorem	

Dual mapping from reflexive info flow policy
R to ordered set P order-preserving	

Proof sketch: all notation as before	

(⇒) Let a ≤R b. Then a ∈ lR(a), a ∈ hR(b), so
lR(a) ⊆ hR(b), or lR(a) ≤P hR(b)	

(⇐) Let lR(a) ≤P hR(b). Then lR(a) ⊆ hR(b).
But lR(a) = { a }, so a ∈ hR(b), giving a ≤R b	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #22	

Info Flow Requirements	

•  Interpretation: let confine(x) = { xL, xU },
consider class y	

–  Information can flow from x to element of y iff

xL ≤R y, or lR(xL) ⊆ hR(y)	

–  Information can flow from element of y to x iff

y ≤R xU, or lR(y) ⊆ hR(xU)	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #23	

Revisit Government Example	

•  Information flow policy is R	

•  Flow relationships among classes are:	

public ≤R public	

public ≤R analysis 	
analysis ≤R analysis	

public ≤R covert 	
covert ≤R covert	

public ≤R top-level 	
covert ≤R top-level	

analysis ≤R top-level 	
top-level ≤R top-level	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #24	

Dual Mapping of R	

•  Elements lR, hR:	

lR(public) = { public }	

hR(public = { public }	

lR(analysis) = { analysis }	

hR(analysis) = { public, analysis }	

lR(covert) = { covert }	

hR(covert) = { public, covert }	

lR(top-level) = { top-level }	

hR(top-level) = { public, analysis, covert, top-level }	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #25	

confine	

•  Let p be entity of type PRO, a of type A, s
of type S	

•  In terms of P (not R), we get:	

–  confine(p) = [{ public }, { public, analysis }]	

–  confine(a) = [{ analysis },	

	
 	
{ public, analysis, covert, top-level }]	

–  confine(s) = [{ covert },	

	
 	
{ public, analysis, covert, top-level }]	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #26	

And the Flow Relations Are …	

•  p → a as lR(p) ⊆ hR(a)	

–  lR(p) = { public }	

–  hR(a) = { public, analysis, covert, top-level }	

•  Similarly: a → p, p → s, a → s, s → a	

•  But s → p is false as lR(s) ⊄ hR(p)	

–  lR(s) = { covert }	

–  hR(p) = { public, analysis }	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #27	

Analysis	

•  (SP, ≤P) is a lattice, so it can be analyzed
like a lattice policy	

•  Dual mapping preserves ordering, hence
non-ordering and non-transitivity, of
original policy	

– So results of analysis of (SP, ≤P) can be mapped

back into (SCR, ≤R, joinR)	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #28	

Compiler-Based Mechanisms	

•  Detect unauthorized information flows in a

program during compilation	

•  Analysis not precise, but secure	

–  If a flow could violate policy (but may not), it is
unauthorized	

–  No unauthorized path along which information could
flow remains undetected	

•  Set of statements certified with respect to an
information flow policy if the flows in the set of
statements do not violate that policy	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #29	

Example	

if x = 1 then y := a;!
else y := b;!

•  Info flows from x and a to y, or from x and b
to y	

•  Certified only if x ≤ y and a ≤ y and b ≤ y 	

– Note flows for both branches must be true

unless compiler can determine that one branch
will never be taken	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #30	

Declarations	

•  Notation:	

x: int class { A, B }	

 	
means x is an integer variable with security
class at least lub{ A, B }, so lub{ A, B } ≤ x	

•  Distinguished classes Low, High	

– Constants are always Low	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #31	

Input Parameters	

•  Parameters through which data passed into
procedure	

•  Class of parameter is class of actual
argument	

ip: type class { ip }	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #32	

Output Parameters	

•  Parameters through which data passed out of
procedure	

–  If data passed in, called “input/output parameter”	

•  As information can flow from input parameters to
output parameters, class must include this:	

op: type class { r1, ..., rn }	

	
where ri is class of ith input or input/output
argument 	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #33	

Example	

proc sum(x: int class { A };!
! !var out: int class { A, B });!
begin!
!out := out + x;!
end;!

•  Require x ≤ out and out ≤ out 	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #34	

Array Elements	

•  Information flowing out:	

... := a[i]!

	
Value of i, a[i] both affect result, so class is
lub{ a[i], i }	

•  Information flowing in:	

a[i] := ...	

•  Only value of a[i] affected, so class is a[i] 	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #35	

Assignment Statements	

x := y + z;!

•  Information flows from y, z to x, so this
requires lub(y, z) ≤ x	

More generally:	

y := f(x1, ..., xn)	

•  the relation lub(x1, …, xn) ≤ y must hold	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #36	

Compound Statements	

x := y + z; a := b * c – x;!

•  First statement: lub(y, z) ≤ x	

•  Second statement: lub(b, c, x) ≤ a	

•  So, both must hold (i.e., be secure)	

More generally:	

S1; ...; Sn;	

•  Each individual Si must be secure	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #37	

Conditional Statements	

if x + y < z then a := b else d := b * c – x;!

•  The statement executed reveals information about
x, y, z, so lub(x, y, z) ≤ glb(a, d)	

More generally:	

if f(x1, ..., xn) then S1 else S2; end!

•  S1, S2 must be secure	

•  lub(x1, …, xn) ≤	

 glb(y | y target of assignment in S1, S2)	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #38	

Iterative Statements	

while i < n do begin!
! ! !a[i] := b[i]; i := i + 1; end!

•  Same ideas as for “if”, but must terminate	

More generally:	

while f(x1, ..., xn) do S;	

•  Loop must terminate;	

•  S must be secure	

•  lub(x1, …, xn) ≤	

 glb(y | y target of assignment in S)	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #39	

Goto Statements	

•  No assignments	

– Hence no explicit flows	

•  Need to detect implicit flows	

•  Basic block is sequence of statements that

have one entry point and one exit point	

– Control in block always flows from entry point

to exit point	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #40	

Example Program	

proc tm(x: array[1..10][1..10] of int class {x};!
 var y: array[1..10][1..10] of int class {y});!
var i, j: int {i};!
begin!
b1 !i := 1;!
b2 L2:!if i > 10 then goto L7;!
b3 !j := 1;!
b4 L4:!if j > 10 then goto L6;!
b5 !y[j][i] := x[i][j]; j := j + 1; goto L4;!
b6 L6:!i := i + 1; goto L2;!
b7 L7:!
end;!

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #41	

Flow of Control	

b1	
 b2	
 b7	

b6	

b3	

b4	

b5	

i > n	

i ≤ n	

j > n	

j ≤ n	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #42	

IFDs	

•  Idea: when two paths out of basic block, implicit

flow occurs	

–  Because information says which path to take	

•  When paths converge, either:	

–  Implicit flow becomes irrelevant; or	

–  Implicit flow becomes explicit	

•  Immediate forward dominator of a basic block b
(written IFD(b)) is the first basic block lying on all
paths of execution passing through b	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #43	

IFD Example	

•  In previous procedure:	

–  IFD(b1) = b2 	
one path	

–  IFD(b2) = b7 	
b2→b7 or b2→b3→b6→b2→b7	

–  IFD(b3) = b4 	
one path	

–  IFD(b4) = b6 	
b4→b6 or b4→b5→b6	

–  IFD(b5) = b4 	
one path	

–  IFD(b6) = b2 	
one path	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #44	

Requirements	

•  Bi is the set of basic blocks along an execution

path from bi to IFD(bi)	

–  Analogous to statements in conditional statement	

•  xi1, …, xin variables in expression selecting which
execution path containing basic blocks in Bi used	

–  Analogous to conditional expression	

•  Requirements for being secure:	

–  All statements in each basic blocks are secure	

–  lub(xi1, …, xin) ≤ glb{ y | y target of assignment in Bi }	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #45	

Example of Requirements	

•  Within each basic block:	

b1: Low ≤ i	
 	
b3: Low ≤ j 	
 b6: lub{ Low, i } ≤ i	

b5: lub(x[i][j], i, j) ≤ y[j][i]; lub(Low, j) ≤ j	

–  Combining, lub(x[i][j], i, j) ≤ y[j][i]	

–  From declarations, true when lub(x, i) ≤ y	

•  B2 = {b3, b4, b5, b6}	

–  Assignments to i, j, y[j][i]; conditional is i ≤ 10	

–  Requires i ≤ glb(i, j, y[j][i])	

–  From declarations, true when i ≤ y	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #46	

Example (continued)	

•  B4 = { b5 }	

– Assignments to j, y[j][i]; conditional is j ≤ 10	

– Requires j ≤ glb(j, y[j][i])	

– From declarations, means i ≤ y	

•  Result:	

– Combine lub(x, i) ≤ y; i ≤ y; i ≤ y	

– Requirement is lub(x, i) ≤ y	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #47	

Procedure Calls	

tm(a, b);!

From previous slides, to be secure, lub(x, i) ≤ y must hold	

•  In call, x corresponds to a, y to b	

•  Means that lub(a, i) ≤ b, or a ≤ b 	

More generally:	

proc pn(i1, ..., im: int; var o1, ..., on: int) !
begin S end;	

•  S must be secure	

•  For all j and k, if ij ≤ ok, then xj ≤ yk	

•  For all j and k, if oj ≤ ok, then yj ≤ yk	

February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #48	

