February 27, 2014

- Information flow
- Information flow policies
	- Non-transitive
	- Transitive non-lattice
- Compiler-based mechanisms
- Execution-based mechanisms

Entropy and Information Flow

- Idea: info flows from *x* to *y* as a result of a sequence of commands *c* if you can deduce information about *x* before *c* from the value in *y* after *c*
- Formally:
	- *s* time before execution of *c*, *t* time after
	- $-H(x_s | y_t) < H(x_s | y_s)$
	- $-$ If no *y* at time *s*, then $H(x_s | y_t) < H(x_s)$

Example 1

• Command is $x := y + z$; where:

 $-0 \le y \le 7$, equal probability

 $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

• *s* state before command executed; *t*, after; so

$$
- \text{H}(y_s) = \text{H}(y_t) = -8(1/8) \text{ lg } (1/8) = 3
$$

- \text{H}(z_s) = \text{H}(z_t) = -(1/2) \text{ lg } (1/2) -2(1/4) \text{ lg } (1/4) = 1.5

• If you know x_t , y_s can have at most 3 values, so $H(y_s | x_t) = -3(1/3) \lg(1/3) = \lg 3$

Example 2

• Command is

$$
- if x = 1 then y := 0 else y := 1;
$$

where:

– *x*, *y* equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa $-$ Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from *x* to *y*

Implicit Flow of Information

- Information flows from *x* to *y* without an *explicit* assignment of the form $y := f(x)$ $-f(x)$ an arithmetic expression with variable *x*
- Example from previous slide:

$$
-if x = 1 then y := 0
$$

else $y := 1$;

• So must look for implicit flows of information to analyze program

Notation

- *x* means class of *x*
	- In Bell-LaPadula based system, same as "label of security compartment to which *x* belongs"
- $x \leq y$ means "information can flow from an element in class of *x* to an element in class of y "
	- Or, "information with a label placing it in class *x* can flow into class *y*"

Information Flow Policies

Information flow policies are usually:

- reflexive
	- So information can flow freely among members of a single class
- transitive
	- So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #7

Non-Transitive Policies

- Betty is a confident of Anne
- Cathy is a confident of Betty
	- With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy's spouse
	- Transitivity undesirable in this case, probably

Transitive Non-Lattice Policies

- 2 faculty members co-PIs on a grant – Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
	- Reflexive and transitive
- But some elements (people) have no "least upper bound" element
	- What is it for the faculty members?

Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_I, \leq_I, join_I)$:
	- *SC_I* set of security classes
	- \leq_I ordering relation on elements of SC_I
	- $-$ *join*_I function to combine two elements of *SC*_I
- Example: Bell-LaPadula Model
	- $-SC_I$ set of security compartments
	- ≤*^I* ordering relation *dom*
	- $-$ *join*_I function *lub*

Confinement Flow Model

- $(I, O, confine, \rightarrow)$
	- $-I = (SC_I, \leq_I, join_I)$
	- *O* set of entities
	- \rightarrow : $O \times O$ with $(a, b) \in \rightarrow$ (written $a \rightarrow b$) iff information can flow from *a* to *b*
	- *−* for *a* ∈ *O*, *confine*(*a*) = (a_L , a_U) ∈ $SC_I \times SC_I$ with $a_L ≤_I a_U$
		- Interpretation: for $a \in O$, if $x \leq I a_{U}$, info can flow from x to a, and if $a_L \leq I$ *x*, info can flow from *a* to *x*
		- So a_L lowest classification of info allowed to flow out of a , and a_U highest classification of info allowed to flow into *a*

Assumptions, *etc*.

- Assumes: object can change security classes – So, variable can take on security class of its data
- Object *x* has security class *x* currently
- Note transitivity *not* required
- If information can flow from *a* to *b*, then *b* dominates *a* under ordering of policy *I*: $(\forall a, b \in O)$ [$a \rightarrow b \Rightarrow a_{I} \leq_{I} b_{II}$]

Example 1

- $SC_I = \{ U, C, S, TS \}$, with $U \leq_I C, C \leq_I S$, and $S \leq_I TS$
- $a, b, c \in O$
	- $-$ confine(*a*) = [C, C]
	- $-$ confine(b) = [S, S]
	- $-$ confine(*c*) = [TS, TS]
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$

$$
-\text{ As }a_L\leq_I b_U,a_L\leq_I c_U,b_L\leq_I c_U
$$

– Transitivity holds

Example 2

- SC_I , \leq_I as in Example 1
- $x, y, z \in O$
	- $-$ confine(x) = $[C, C]$
	- $-$ confine(*y*) = [S, S]
	- $-$ confine(*z*) = [C, TS]
- Secure information flows: $x \rightarrow y$, $x \rightarrow z$, $y \rightarrow z$, $z \rightarrow x, z \rightarrow y$
	- $-$ As $x_L ≤_I y_U, x_L ≤_I z_U, y_L ≤_I z_U, z_L ≤_I x_U, z_L ≤_I y_U$
	- Transitivity does not hold
		- $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_l x_U$ is false

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #14

Transitive Non-Lattice Policies

- $Q = (S_Q, \leq_Q)$ is a *quasi-ordered set* when \leq_Q is transitive and reflexive over *SQ*
- How to handle information flow?
	- Define a partially ordered set containing quasiordered set
	- Add least upper bound, greatest lower bound to partially ordered set
	- It's a lattice, so apply lattice rules!

In Detail …

- $\forall x \in S_Q$: let $f(x) = \{y \mid y \in S_Q \land y \leq_Q x\}$ $-$ Define $S_{OP} = \{ f(x) | x \in S_Q \}$
	- $-$ Define \leq_{OP} = { (x, y) | $x, y \in S_{OP}$ ^ $x \subseteq y$ }
		- S_{OP} partially ordered set under \leq_{OP}
		- *f* preserves order, so $y \leq Q$ *x* iff $f(x) \leq Q$ *f*(*y*)
- Add upper, lower bounds
	- $-S_{QP} = S_{QP} \cup \{ S_Q, \emptyset \}$
	- Upper bound $ub(x, y) = \{ z | z \in S_{OP} \land x \subseteq z \land y \subseteq z \}$
	- Least upper bound *lub*(*x*, *y*) = ∩*ub*(*x*, *y*)
		- Lower bound, greatest lower bound defined analogously

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #16

And the Policy Is …

- Now (S_{QP}', \leq_{QP}) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!

Non-Transitive Flow Policies

- Government agency information flow policy (on next slide)
- Entities public relations officers PRO, analysts A, spymasters S

 $-$ *confine*(PRO) = { public, analysis }

- $-$ *confine*(A) = { analysis, top-level }
- $-$ *confine*(S) = { covert, top-level }

Information Flow

- By confinement flow model:
	- $-$ PRO \leq A, A \leq PRO
	- $-$ PRO \leq S
	- $A \leq S, S \leq A$
- Data *cannot* flow to public relations officers; not transitive
	- $S \le A, A \le PRO$
	- S ≤ PRO is *false*

Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
	- Done so this set is partially ordered
	- Means it can be transformed into a lattice
- Can show this mapping preserves ordering relation
	- So it preserves non-orderings and non-transitivity of elements corresponding to those of original set

Dual Mapping

- $R = (SC_R, \leq_R, join_R)$ reflexive info flow policy
- $P = (S_p, \leq_p)$ ordered set
	- $-$ Define *dual mapping* functions l_R , h_R : $SC_R \rightarrow S_p$
		- $l_R(x) = \{ x \}$
		- $h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \}$
	- $-S_p$ contains subsets of SC_p ; \leq_p subset relation
	- Dual mapping function *order preserving* iff $(\forall a, b \in SC_R)$ [$a \leq_R b \Leftrightarrow l_R(a) \leq_p h_R(b)$]

Theorem

Dual mapping from reflexive info flow policy *R* to ordered set *P* order-preserving *Proof sketch*: all notation as before (\Rightarrow) Let $a \leq R b$. Then $a \in l_R(a)$, $a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq p h_R(b)$ (\Leftarrow) Let $l_R(a) \leq p h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq R b$

Info Flow Requirements

- Interpretation: let $\text{confine}(x) = \{x_L, x_U\},$ consider class *y*
	- Information can flow from *x* to element of *y* iff $x_L \leq_R y$, or $l_R(x_L) \subseteq h_R(y)$
	- Information can flow from element of γ to χ iff *y* ≤*R x_I*, or $l_R(y)$ ⊆ $h_R(x)$

Revisit Government Example

- Information flow policy is *R*
- Flow relationships among classes are: public \leq_R public public \leq_R analysis analysis \leq_R analysis public \leq_R covert covert \leq_R covert public ≤_{*R*} top-level covert ≤_{*R*} top-level analysis $≤_R$ top-level top-level $≤_R$ top-level

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #24

Dual Mapping of *R*

• Elements l_R , h_R : $l_R(public) = { public }$ h_R (public = { public } l_R (analysis) = { analysis } h_R (analysis) = { public, analysis } l_R (covert) = { covert } h_R (covert) = { public, covert } l_p (top-level) = { top-level } h_R (top-level) = { public, analysis, covert, top-level }

confine

- Let *p* be entity of type PRO, *a* of type A, *s* of type S
- In terms of *P* (not *R*), we get:
	- $-$ *confine*(*p*) = $\left[\{ \text{public } \}, \{ \text{public, analysis } \} \right]$
	- $-$ *confine*(*a*) = $\lceil \{\text{ analysis }\},\}$

{ public, analysis, covert, top-level }] $-$ *confine*(*s*) = $\lceil \{$ covert $\},\$ { public, analysis, covert, top-level }]

And the Flow Relations Are …

- $p \rightarrow a$ as $l_p(p) \subseteq h_p(a)$
	- $-l_R(p) = \{ \text{ public } \}$
	- $h_R(a) = \{$ public, analysis, covert, top-level $\}$
- Similarly: $a \rightarrow p, p \rightarrow s, a \rightarrow s, s \rightarrow a$
- *But* $s \rightarrow p$ *is false* as $l_R(s) \not\subset h_R(p)$ $-l_R(s) = \{$ covert $\}$
	- $-h_R(p) = \{$ public, analysis $\}$

Analysis

- (S_p, \leq_p) is a lattice, so it can be analyzed like a lattice policy
- Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
	- So results of analysis of (S_p, \leq_p) can be mapped back into $(SC_R, \leq_R, join_R)$

Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
	- If a flow *could* violate policy (but may not), it is unauthorized
	- No unauthorized path along which information could flow remains undetected
- Set of statements *certified* with respect to an information flow policy if the flows in the set of statements do not violate that policy

Example

if $x = 1$ then $y := a$; **else** *y* := *b*;

- Info flows from *x* and *a* to *y*, or from *x* and *b* to *y*
- Certified only if $x \le y$ and $a \le y$ and $b \le y$ – Note flows for *both* branches must be true unless compiler can determine that one branch will *never* be taken

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #30

Declarations

• Notation:

x: **int class** { A, B } means *x* is an integer variable with security class at least $lub{ A, B }$, so $lub{ A, B }$ $\leq x$

• Distinguished classes *Low*, *High*

– Constants are always *Low*

Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

ip: *type* **class** { *ip* }

Output Parameters

• Parameters through which data passed out of procedure

– If data passed in, called "input/output parameter"

• As information can flow from input parameters to output parameters, class must include this:

o_p: *type* class { r_1 , ..., r_n } where r_i is class of *i*th input or input/output argument

Example

- **proc** *sum*(*x*: **int class** { A }; **var** *out*: **int class** { A, B }); **begin** *out* := *out* + *x*; **end**;
- Require *x* ≤ *out* and *out* ≤ *out*

Array Elements

• Information flowing out:

... := *a*[*i*]

Value of *i*, *a*[*i*] both affect result, so class is $\lceil \text{lub} \{ \text{ } a[i], i \} \rceil$

• Information flowing in:

a[*i*] := ...

• Only value of *a*[*i*] affected, so class is *a*[*i*]

Assignment Statements

x := *y* + *z*;

• Information flows from *y*, *z* to *x*, so this requires $lub(y, z) \leq x$

More generally:

 $y := f(X_1, \ldots, X_n)$

• the relation $lub(x_1, ..., x_n) \leq y$ must hold

Compound Statements

x := *y* + *z*; *a* := *b* * *c* – *x*;

- First statement: $lub(y, z) \leq x$
- Second statement: $lub(b, c, x) \le a$
- So, both must hold (i.e., be secure)

More generally:

$$
S_1; \ldots; S_n;
$$

• Each individual S_i must be secure

Conditional Statements

if $x + y < z$ then $a := b$ else $d := b * c - x$;

• The statement executed reveals information about x, y, z , so $lub(x, y, z) \leq glb(a, d)$

More generally:

if $f(x_1, \ldots, x_n)$ then S_1 else S_2 ; end

- S_1 , S_2 must be secure
- $lub(\underline{x}_1, ..., \underline{x}_n) \leq$

glb(*y* | *y* target of assignment in S_1 , S_2)

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #38

Iterative Statements

while *i* < *n* **do begin** *a*[*i*] := *b*[*i*]; *i* := *i* + 1; **end**

• Same ideas as for "if", but must terminate

More generally:

while $f(X_1, \ldots, X_n)$ do *S*;

- Loop must terminate;
- *S* must be secure
- $lub(\underline{x}_1, ..., \underline{x}_n) \leq$

glb(*y* | *y* target of assignment in *S*)

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #39

Goto Statements

• No assignments

– Hence no explicit flows

- Need to detect implicit flows
- *Basic block* is sequence of statements that have one entry point and one exit point
	- Control in block *always* flows from entry point to exit point

Example Program

```
proc tm(x: array[1..10][1..10] of int class {x};
     var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
b_1 i := 1;
b_2 L2: if i > 10 then goto L7;
b_3 j := 1;
b_4 L4: if j > 10 then goto L6;
b_5 y[j][i] := x[i][j]; j := j + 1; goto L4;
b_6 L6: i := i + 1; goto L2;
b_7 L7:
end;
```
Flow of Control

IFDs

- Idea: when two paths out of basic block, implicit flow occurs
	- Because information says *which* path to take
- When paths converge, either:
	- Implicit flow becomes irrelevant; or
	- Implicit flow becomes explicit
- *Immediate forward dominator* of a basic block *b* (written $IFD(b)$) is the first basic block lying on all paths of execution passing through *b*

IFD Example

• In previous procedure: $-$ IFD(b_1) = b_2 one path $-$ IFD(*b*₂) = *b*₇ *b*₂→*b*₇ or *b*₂→*b*₃→*b*₄→*b*₂→*b*₇ $-$ IFD(b_3) = b_4 one path $-$ IFD(b_A) = b_6 $b_4 \rightarrow b_6$ or $b_4 \rightarrow b_5 \rightarrow b_6$ $-$ IFD(b_5) = b_4 one path $-$ IFD(b_6) = b_2 one path

Requirements

- B_i is the set of basic blocks along an execution path from b_i to $\mathrm{IFD}(b_i)$
	- Analogous to statements in conditional statement
- x_{i1}, \ldots, x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
	- Analogous to conditional expression
- Requirements for being secure:
	- All statements in each basic blocks are secure
	- $-$ *lub*($x_{i1}, ..., x_{in} \le$ glb{ γ | γ target of assignment in B_i }

Example of Requirements

• Within each basic block:

 b_1 : *Low* $\leq i$ b_2 : *Low* $\leq j$ b_6 : lub{ *Low*, *i* } $\leq i$ b_5 : $lub(x[i][j], i, j) \leq y[j][i]; lub(Low, j) \leq j$

- $-$ Combining, $lub(\underline{x[i][j]}, \underline{i}, \underline{j}) \leq \underline{y[j][i]}$
- From declarations, true when $lub(x, i) \le y$
- $B_2 = \{b_3, b_4, b_5, b_6\}$
	- $-$ Assignments to *i*, *j*, $y[j][i]$; conditional is $i \le 10$
	- Requires *i* ≤ *glb*(*i*, *j*, *y*[*j*][*i*])
	- $-$ From declarations, true when $i \leq y$

February 27, 2014 *ECS 235B Winter Quarter 2014* Slide #46

Example (continued)

- $B_4 = \{ b_5 \}$
	- $-$ Assignments to *j*, $y[j][i]$; conditional is $j \le 10$
	- $-$ Requires $j \leq glb(j, y[j][i])$
	- From declarations, means *i* ≤ *y*
- Result:
	- $-$ Combine *lub* $(x, i) \le y$; $i \le y$; $i \le y$
	- Requirement is $lub(x, i) \leq y$

Procedure Calls

tm(*a*, *b*);

From previous slides, to be secure, $lub(x, i) \leq y$ must hold

- In call, *x* corresponds to *a*, *y* to *b*
- Means that $lub(a, i) \leq b$, or $a \leq b$

More generally:

proc $pn(i_1, \ldots, i_m: \text{int}; \text{var } o_1, \ldots, o_n: \text{int})$ begin *S* end;

- *S* must be secure
- For all *j* and *k*, if $\underline{i_j} \leq \underline{o_k}$, then $\underline{x_j} \leq \underline{y_k}$
- For all *j* and *k*, if $\omega_i \leq \omega_k$, then $y_i \leq y_k$