
February 27, 2014	


•  Information flow	

•  Information flow policies	


– Non-transitive	

– Transitive non-lattice	


•  Compiler-based mechanisms	

•  Execution-based mechanisms	
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Entropy and Information Flow	


•  Idea: info flows from x to y as a result of a 
sequence of commands c if you can deduce 
information about x before c from the value 
in y after c	


•  Formally:	

–  s time before execution of c, t time after	

– H(xs | yt) < H(xs | ys)	

–  If no y at time s, then H(xs | yt) < H(xs)	
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Example 1	


•  Command is x := y + z; where:	

–  0 ≤ y ≤ 7, equal probability	

–  z = 1 with prob. 1/2, z = 2 or 3 with prob. 1/4 each	


•  s state before command executed; t, after; so	

–  H(ys) = H(yt) = –8(1/8) lg (1/8) = 3	

–  H(zs) = H(zt) = –(1/2) lg (1/2) –2(1/4) lg (1/4) = 1.5	


•  If you know xt, ys can have at most 3 values, so 
H(ys | xt) = –3(1/3) lg (1/3) = lg 3	
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Example 2	

•  Command is	


–  if x = 1 then y := 0 else y := 1;	

	
where:	


–  x, y equally likely to be either 0 or 1	

•  H(xs) = 1 as x can be either 0 or 1 with equal 

probability	

•  H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa	


–  Thus, H(xs | yt) = 0 < 1 = H(xs)	

•  So information flowed from x to y	
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Implicit Flow of Information	


•  Information flows from x to y without an 
explicit assignment of the form y := f(x)	

–  f(x) an arithmetic expression with variable x	


•  Example from previous slide:	

–  if x = 1 then y := 0	

	
else y := 1;	


•  So must look for implicit flows of 
information to analyze program	
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Notation	


•  x means class of x	

–  In Bell-LaPadula based system, same as “label 

of security compartment to which x belongs”	

•  x ≤ y means “information can flow from an 

element in class of x to an element in class 
of y”	

– Or, “information with a label placing it in class 

x can flow into class y”	
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Information Flow Policies	


Information flow policies are usually:	

•  reflexive	


– So information can flow freely among members 
of a single class	


•  transitive	

– So if information can flow from class 1 to class 

2, and from class 2 to class 3, then information 
can flow from class 1 to class 3	
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Non-Transitive Policies	


•  Betty is a confident of Anne	

•  Cathy is a confident of Betty	


– With transitivity, information flows from Anne 
to Betty to Cathy	


•  Anne confides to Betty she is having an 
affair with Cathy’s spouse	

– Transitivity undesirable in this case, probably	
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Transitive Non-Lattice Policies	

•  2 faculty members co-PIs on a grant	


–  Equal authority; neither can overrule the other	

•  Grad students report to faculty members	

•  Undergrads report to grad students	

•  Information flow relation is:	


–  Reflexive and transitive	

•  But some elements (people) have no “least upper 

bound” element	

–  What is it for the faculty members?	
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Confidentiality Policy Model	

•  Lattice model fails in previous 2 cases	

•  Generalize: policy I = (SCI, ≤I, joinI):	


–  SCI set of security classes	

–  ≤I ordering relation on elements of SCI	

–  joinI function to combine two elements of SCI	
	


•  Example: Bell-LaPadula Model	

–  SCI set of security compartments	

–  ≤I ordering relation dom	

–  joinI function lub	
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Confinement Flow Model	


•  (I, O, confine, →)	

–  I = (SCI, ≤I, joinI)	

–  O set of entities	

–  →: O×O with (a, b) ∈ → (written a → b) iff 

information can flow from a to b	

–  for a ∈ O, confine(a) = (aL, aU) ∈ SCI×SCI with aL ≤I aU	


•  Interpretation: for a ∈ O, if x ≤I aU, info can flow from x to a, 
and if aL ≤I x, info can flow from a to x	


•  So aL lowest classification of info allowed to flow out of a, and 
aU highest classification of info allowed to flow into a 	
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Assumptions, etc.	


•  Assumes: object can change security classes	

– So, variable can take on security class of its 

data	

•  Object x has security class x currently	

•  Note transitivity not required	

•  If information can flow from a to b, then b 

dominates a under ordering of policy I:	

(∀ a, b ∈ O)[ a → b ⇒ aL ≤I bU ]	
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Example 1	

•  SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and     

S ≤I TS	

•  a, b, c ∈ O	


–  confine(a) = [ C, C ]	

–  confine(b) = [ S, S ]	

–  confine(c) = [ TS, TS ]	


•  Secure information flows: a → b, a → c, b → c	

–  As aL ≤I bU, aL ≤I cU, bL ≤I cU	

–  Transitivity holds	
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Example 2	

•  SCI, ≤I as in Example 1	

•  x, y, z ∈ O	


–  confine(x) = [ C, C ]	

–  confine(y) = [ S, S ]	

–  confine(z) = [ C, TS ]	


•  Secure information flows:  x → y,  x → z,  y → z,  
z → x, z → y	

–  As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU	

–  Transitivity does not hold	


•   y → z and z → x, but y → x  is false, because yL ≤I xU is false	


February 27, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #14	




Transitive Non-Lattice Policies	


•  Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q 
is transitive and reflexive over SQ	


•  How to handle information flow?	

– Define a partially ordered set containing quasi-

ordered set	

– Add least upper bound, greatest lower bound to 

partially ordered set	

–  It’s a lattice, so apply lattice rules!	
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In Detail …	

•  ∀x ∈ SQ: let f(x) = { y | y ∈ SQ ∧ y ≤Q x }	


–  Define SQP = { f(x) | x ∈ SQ }	

–  Define ≤QP = { (x, y) | x, y ∈ SQP ∧ x ⊆ y }	


•  SQP partially ordered set under ≤QP 	

•  f preserves order, so y ≤Q x iff f(x) ≤QP f(y)	


•  Add upper, lower bounds	

–  SQPʹ′ = SQP ∪ { SQ, ∅ }	

–  Upper bound ub(x, y) = { z | z ∈ SQP ∧ x ⊆ z ∧ y ⊆ z }	

–  Least upper bound lub(x, y) = ∩ub(x, y)	


•  Lower bound, greatest lower bound defined analogously	
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And the Policy Is …	


•  Now (SQPʹ′, ≤QP) is lattice	

•  Information flow policy on quasi-ordered 

set emulates that of this lattice!	
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Non-Transitive Flow Policies	


•  Government agency information flow policy 
(on next slide)	


•  Entities public relations officers PRO, 
analysts A, spymasters S	

–  confine(PRO) = { public, analysis }	

–  confine(A) = { analysis, top-level }	

–  confine(S) = { covert, top-level }	
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Information Flow	

•  By confinement flow 

model:	

–  PRO ≤ A, A ≤ PRO	

–  PRO ≤ S	

–  A ≤ S, S ≤ A	


•  Data cannot flow to 
public relations 
officers; not transitive	

–  S ≤ A, A ≤ PRO	

–  S ≤ PRO is false	


top-level	


analysis	
 covert	


public	
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Transforming Into Lattice	


•  Rough idea: apply a special mapping to generate a 
subset of the power set of the set of classes	

–  Done so this set is partially ordered	

–  Means it can be transformed into a lattice	


•  Can show this mapping preserves ordering relation	

–  So it preserves non-orderings and non-transitivity of 

elements corresponding to those of original set	
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Dual Mapping	


•  R = (SCR, ≤R, joinR) reflexive info flow policy	

•  P = (SP, ≤P) ordered set	


–  Define dual mapping functions lR, hR: SCR→SP	

•  lR(x) = { x }	

•  hR(x) = { y | y ∈ SCR ∧ y ≤R x }	


–  SP contains subsets of SCR; ≤P subset relation	

–  Dual mapping function order preserving iff	


(∀a, b ∈ SCR )[ a ≤R b ⇔ lR(a) ≤P hR(b) ]	
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Theorem	


Dual mapping from reflexive info flow policy 
R to ordered set P order-preserving	

Proof sketch: all notation as before	

(⇒) Let a ≤R b. Then a ∈ lR(a), a ∈ hR(b), so 
lR(a) ⊆ hR(b), or lR(a) ≤P hR(b)	

(⇐) Let lR(a) ≤P hR(b). Then lR(a) ⊆ hR(b). 
But lR(a) = { a }, so a ∈ hR(b), giving a ≤R b	
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Info Flow Requirements	


•  Interpretation: let confine(x) = { xL, xU }, 
consider class y	

–  Information can flow from x to element of y iff 

xL ≤R y, or lR(xL) ⊆ hR(y)	

–  Information can flow from element of y to x iff 

y ≤R xU, or lR(y) ⊆ hR(xU)	
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Revisit Government Example	


•  Information flow policy is R	

•  Flow relationships among classes are:	


public ≤R public	

public ≤R analysis 	
analysis ≤R  analysis	

public ≤R  covert 	
covert ≤R  covert	

public ≤R  top-level 	
covert ≤R  top-level	

analysis ≤R  top-level 	
top-level ≤R  top-level	
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Dual Mapping of R	


•  Elements lR, hR:	

lR(public) = { public }	

hR(public = { public }	

lR(analysis) = { analysis }	

hR(analysis) = { public, analysis }	

lR(covert) = { covert }	

hR(covert) = { public, covert }	

lR(top-level) = { top-level }	

hR(top-level) = { public, analysis, covert, top-level }	
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confine	


•  Let p be entity of type PRO, a of type A, s 
of type S	


•  In terms of P (not R), we get:	

–  confine(p) = [ { public }, { public, analysis } ]	

–  confine(a) = [ { analysis },	

	
 	
{ public, analysis, covert, top-level } ]	


–  confine(s) = [ { covert },	

	
 	
{ public, analysis, covert, top-level } ]	
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And the Flow Relations Are …	


•  p → a as lR(p) ⊆ hR(a)	

–  lR(p) = { public }	

–  hR(a) = { public, analysis, covert, top-level }	


•  Similarly: a → p, p → s, a → s, s → a	

•  But s → p is false as lR(s) ⊄ hR(p)	


–  lR(s) = { covert }	

–  hR(p) = { public, analysis }	
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Analysis	


•  (SP, ≤P) is a lattice, so it can be analyzed 
like a lattice policy	


•  Dual mapping preserves ordering, hence 
non-ordering and non-transitivity, of 
original policy	

– So results of analysis of (SP, ≤P) can be mapped 

back into (SCR, ≤R, joinR)	
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Compiler-Based Mechanisms	

•  Detect unauthorized information flows in a 

program during compilation	

•  Analysis not precise, but secure	


–  If a flow could violate policy (but may not), it is 
unauthorized	


–  No unauthorized path along which information could 
flow remains undetected	


•  Set of statements certified with respect to an 
information flow policy if the flows in the set of 
statements do not violate that policy	
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Example	


if x = 1 then y := a;!
else y := b;!

•  Info flows from x and a to y, or from x and b 
to y	


•  Certified only if x ≤ y and a ≤ y and b ≤ y 	

– Note flows for both branches must be true 

unless compiler can determine that one branch 
will never be taken	
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Declarations	


•  Notation:	

x: int class { A, B }	


 	
means x is an integer variable with security 
class at least lub{ A, B }, so lub{ A, B } ≤ x	


•  Distinguished classes Low, High	

– Constants are always Low	
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Input Parameters	


•  Parameters through which data passed into 
procedure	


•  Class of parameter is class of actual 
argument	


ip: type class { ip }	
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Output Parameters	


•  Parameters through which data passed out of 
procedure	

–  If data passed in, called “input/output parameter”	


•  As information can flow from input parameters to 
output parameters, class must include this:	

op: type class { r1, ..., rn }	


	
where ri is class of ith input or input/output 
argument 	
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Example	


proc sum(x: int class { A };!
! !var out: int class { A, B });!
begin!
!out := out + x;!
end;!

•  Require x ≤ out and out ≤ out 	
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Array Elements	


•  Information flowing out:	

... := a[i]!

	
Value of i, a[i] both affect result, so class is 
lub{ a[i], i }	


•  Information flowing in:	

a[i] := ...	


•  Only value of a[i] affected, so class is a[i] 	
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Assignment Statements	


x := y + z;!

•  Information flows from y, z to x, so this 
requires lub(y, z) ≤ x	


More generally:	

y := f(x1, ..., xn)	


•  the relation lub( x1, …, xn) ≤ y must hold	
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Compound Statements	


x := y + z; a := b * c – x;!

•  First statement: lub(y, z) ≤ x	

•  Second statement: lub(b, c, x) ≤ a	

•  So, both must hold (i.e., be secure)	

More generally:	


S1; ...; Sn;	

•  Each individual Si must be secure	
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Conditional Statements	

if x + y < z then a := b else d := b * c – x;!

•  The statement executed reveals information about 
x, y, z, so lub(x, y, z) ≤ glb(a, d)	


More generally:	

if f(x1, ..., xn) then S1 else S2; end!

•  S1, S2 must be secure	

•  lub(x1, …, xn) ≤	

                     glb(y | y target of assignment in S1, S2)	
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Iterative Statements	

while i < n do begin!
! ! !a[i] := b[i]; i := i + 1; end!

•  Same ideas as for “if”, but must terminate	

More generally:	


while f(x1, ..., xn) do S;	

•  Loop must terminate;	

•  S must be secure	

•  lub(x1, …, xn) ≤	

                            glb(y | y target of assignment in S)	
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Goto Statements	


•  No assignments	

– Hence no explicit flows	


•  Need to detect implicit flows	

•  Basic block is sequence of statements that 

have one entry point and one exit point	

– Control in block always flows from entry point 

to exit point	
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Example Program	

proc tm(x: array[1..10][1..10] of int class {x};!
    var y: array[1..10][1..10] of int class {y});!
var i, j: int {i};!
begin!
b1 !i := 1;!
b2 L2:!if i > 10 then goto L7;!
b3 !j := 1;!
b4 L4:!if j > 10 then goto L6;!
b5 !y[j][i] := x[i][j]; j := j + 1; goto L4;!
b6 L6:!i := i + 1; goto L2;!
b7 L7:!
end;!
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Flow of Control	


b1	
 b2	
 b7	


b6	

b3	


b4	


b5	


i > n	


i ≤ n	


j > n	


j ≤ n	
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IFDs	

•  Idea: when two paths out of basic block, implicit 

flow occurs	

–  Because information says which path to take	


•  When paths converge, either:	

–  Implicit flow becomes irrelevant; or	

–  Implicit flow becomes explicit	


•  Immediate forward dominator of a basic block b 
(written IFD(b)) is the first basic block lying on all 
paths of execution passing through b	
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IFD Example	


•  In previous procedure:	

–  IFD(b1) = b2 	
one path	

–  IFD(b2) = b7 	
b2→b7 or b2→b3→b6→b2→b7	

–  IFD(b3) = b4 	
one path	

–  IFD(b4) = b6 	
b4→b6 or b4→b5→b6	

–  IFD(b5) = b4 	
one path	

–  IFD(b6) = b2 	
one path	
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Requirements	

•  Bi is the set of basic blocks along an execution 

path from bi to IFD(bi)	

–  Analogous to statements in conditional statement	


•  xi1, …, xin variables in expression selecting which 
execution path containing basic blocks in Bi used	

–  Analogous to conditional expression	


•  Requirements for being secure:	

–  All statements in each basic blocks are secure	

–  lub(xi1, …, xin) ≤ glb{ y | y target of assignment in Bi }	
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Example of Requirements	


•  Within each basic block:	

b1: Low ≤ i	
 	
b3: Low ≤ j 	
 b6: lub{ Low, i } ≤ i	

b5: lub(x[i][j], i, j) ≤ y[j][i]; lub(Low, j) ≤ j	

–  Combining, lub(x[i][j], i, j) ≤ y[j][i]	

–  From declarations, true when lub(x, i) ≤ y	


•  B2 = {b3, b4, b5, b6}	

–  Assignments to i, j, y[j][i]; conditional is i ≤ 10	

–  Requires i ≤ glb(i, j, y[j][i])	

–  From declarations, true when i ≤ y	
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Example (continued)	


•  B4 = { b5 }	

– Assignments to j, y[j][i]; conditional is j ≤ 10	

– Requires j ≤ glb(j, y[j][i])	

– From declarations, means i ≤ y	


•  Result:	

– Combine lub(x, i) ≤ y; i ≤ y; i ≤ y	

– Requirement is lub(x, i) ≤ y	
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Procedure Calls	

tm(a, b);!

From previous slides, to be secure, lub(x, i) ≤ y must hold	

•  In call, x corresponds to a, y to b	

•  Means that lub(a, i) ≤ b, or a ≤ b 	

More generally:	

proc pn(i1, ..., im: int; var o1, ..., on: int) !
begin S end;	

•  S must be secure	

•  For all j and k, if ij ≤ ok, then xj ≤ yk	

•  For all j and k, if oj ≤ ok, then  yj ≤ yk	
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