
March 5, 2014	

•  Covert channels	

•  Detection	

•  Mitigation	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #1	

Noisy vs. Noiseless	

•  Noiseless: covert channel uses resource
available only to sender, receiver	

•  Noisy: covert channel uses resource
available to others as well as to sender,
receiver	

–  Idea is that others can contribute extraneous

information that receiver must filter out to
“read” sender’s communication	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #2	

Key Properties	

•  Existence: the covert channel can be used to
send/receive information	

•  Bandwidth: the rate at which information
can be sent along the channel	

•  Goal of analysis: establish these properties
for each channel	

–  If you can eliminate the channel, great!	

–  If not, reduce bandwidth as much as possible	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #3	

Step #1: Detection	

•  Manner in which resource is shared controls
who can send, receive using that resource	

– Shared Resource Matrix Methodology	

–  Information flow analysis	

– Covert flow trees	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #4	

SRMM	

•  Shared Resource Matrix Methodology	

•  Goal: identify shared channels, how they are

shared	

•  Steps:	

–  Identify all shared resources, their visible attributes
[rows]	

–  Determine operations that reference (read), modify
(write) resource [columns]	

–  Contents of matrix show how operation accesses the
resource	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #5	

Example	

•  Multilevel security model	

•  File attributes:	

–  existence, owner, label, size	

•  File manipulation operations:	

–  read, write, delete, create	

–  create succeeds if file does not exist; gets creator as owner,

creator’s label	

–  others require file exists, appropriate labels	

•  Subjects:	

–  High, Low	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #6	

Shared Resource Matrix	

read	
 write	
 delete	
 create	

existence	
 R	
 R	
 R, M	
 R, M	

owner	
 R	
 M	

label	
 R	
 R	
 R	
 M	

size	
 R	
 M	
 M	
 M	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #7	

Covert Storage Channel	

•  Properties that must hold for covert storage
channel:	

1.  Sending, receiving processes have access to

same attribute of shared object;	

2.  Sender can modify that attribute;	

3.  Receiver can reference that attribute; and	

4.  Mechanism for starting processes, properly

sequencing their accesses to resource	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #8	

Example	

•  Consider attributes with both R, M in rows	

•  Let High be sender, Low receiver	

•  create operation both references, modifies existence

attribute	

–  Low can use this due to semantics of create	

•  Need to arrange for proper sequencing accesses to
existence attribute of file (shared resource)	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #9	

Use of Channel	

–  3 files: ready, done, 1bit	

–  Low creates ready at High level	

–  High checks that file exists	

–  If so, to send 1, it creates 1bit; to send 0, skip	

–  Delete ready, create done at High level	

–  Low tries to create done at High level	

–  On failure, High is done	

–  Low tries to create 1bit at level High	

–  Low deletes done, creates ready at High level	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #10	

Covert Timing Channel	

•  Properties that must hold for covert timing

channel:	

1. Sending, receiving processes have access to same

attribute of shared object;	

2. Sender, receiver have access to a time reference (wall

clock, timer, event ordering, …);	

3. Sender can control timing of detection of change to that

attribute by receiver; and	

4. Mechanism for starting processes, properly sequencing

their accesses to resource	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #11	

Example	

•  Revisit variant of KVM/370 channel	

–  Sender, receiver can access ordering of requests by disk
arm scheduler (attribute)	

–  Sender, receiver have access to the ordering of the
requests (time reference)	

–  High can control ordering of requests of Low process
by issuing cylinder numbers to position arm
appropriately (timing of detection of change)	

–  So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #12	

Uses of SRM Methodology	

•  Applicable at many stages of software life cycle

model	

–  Flexbility is its strength	

•  Used to analyze Secure Ada Target	

–  Participants manually constructed SRM from flow

analysis of SAT model	

–  Took transitive closure	

–  Found 2 covert channels	

•  One used assigned level attribute, another assigned type
attribute	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #13	

Summary	

•  Methodology comprehensive but incomplete	

–  How to identify shared resources?	

–  What operations access them and how?	

•  Incompleteness a benefit	

–  Allows use at different stages of software engineering life cycle	

•  Incompleteness a problem	

–  Makes use of methodology sensitive to particular stage of software

development	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #14	

Measuring Capacity	

•  Intuitively, difference between
unmodulated, modulated channel	

– Normal uncertainty in channel is 8 bits	

– Attacker modulates channel to send

information, reducing uncertainty to 5 bits	

– Covert channel capacity is 3 bits	

•  Modulation in effect fixes those bits	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #15	

Formally	

•  Inputs:	

–  A input from Alice (sender)	

–  V input from everyone else	

–  X output of channel	

•  Capacity measures uncertainty in X given A	

•  In other terms: maximize	

I(A; X) = H(X) – H(X | A)	

	
with respect to A	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #16	

Example	

•  If A, V independent, p = p(A=0), q = p(V=0):	

–  p(A=0, V=0) = pq	

–  p(A=1, V=0) = (1–p)q	

–  p(A=0, V=1) = p(1–q)	

–  p(A=1, V=1) = (1–p)(1–q)	

•  So	

–  p(X=0) = p(A=0, V=0) + p(A=1, V=1) = pq + (1–p)(1–q)	

–  p(X=1) = p(A=0, V=1) + p(A=1, V=0) = (1–p)q + p(1–q)	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #17	

More Example	

•  Also:	

–  p(X=0|A=0) = q	

–  p(X=0|A=1) = 1–q	

–  p(X=1|A=0) = 1–q	

–  p(X=1|A=1) = q	

•  So you can compute:	

–  H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]	

–  H(X|A) = –q lg q – (1–q) lg (1–q)	

–  I(A;X) = H(X)–H(X|A)	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #18	

I(A;X)	

I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –	

	
 	
[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +	

	
 	
q lg q + (1 – q) lg (1 – q)	

•  Maximum when p = 0.5; then	

I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)	

•  So, if V constant, q = 0, and I(A;X) = 1	

•  Also, if q = p = 0.5, I(A;X) = 0	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #19	

Analyzing Capacity	

•  Assume a noisy channel	

•  Examine covert channel in MLS database

that uses replication to ensure availability	

–  2-phase commit protocol ensures atomicity	

– Coordinator process manages global execution	

– Participant processes do everything else	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #20	

How It Works	

•  Coordinator sends message to each participant

asking whether to abort or commit transaction	

–  If any says “abort”, coordinator stops	

•  Coordinator gathers replies	

–  If all say “commit”, sends commit messages back to

participants	

–  If any says “abort”, sends abort messages back to

participants	

–  Each participant that sent commit waits for reply; on

receipt, acts accordingly	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #21	

Exceptions	

•  Protocol times out, causing party to act as if
transaction aborted, when:	

– Coordinator doesn’t receive reply from

participant	

– Participant who sends a commit doesn’t receive

reply from coordinator	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #22	

Covert Channel Here	

•  Two types of components	

–  One at Low security level, other at High	

•  Low component begins 2-phase commit	

–  Both High, Low components must cooperate in the 2-phase

commit protocol	

•  High sends information to Low by selectively aborting

transactions	

–  Can send abort messages	

–  Can just not do anything	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #23	

Note	

•  If transaction always succeeded except
when High component sending information,
channel not noisy	

– Capacity would be 1 bit per trial	

– But channel noisy as transactions may abort for

reasons other than the sending of information	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #24	

Analysis	

•  X random variable: what High user wants to send	

–  Assume abort is 1, commit is 0	

–  p = p(X = 0) probability High sends 0	

•  A random variable: what Low receives	

–  For noiseless channel X = A	

•  n + 2 users	

–  Sender, receiver, n others	

–  q probability of transaction aborting at any of these n

users	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #25	

Basic Probabilities	

•  Probabilities of receiving given sending	

–  p(A=0 | X=0) = (1–q)n	

–  p(A=1 | X=0) = 1 – (1–q)n	

–  p(A=0 | X=1) = 0	

–  p(A=1 | X=1) = 1	

•  So probabilities of receiving values:	

–  p(A=0) = p(1–q)n	

–  p(A=1) = 1 – p(1–q)n	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #26	

More Probabilities	

•  Given sending, what is receiving?	

–  p(X=0 | A=0) = 1	

–  p(X=1 | A=0) = 0	

–  p(X=0 | A=1) = p[1–(1–q)n] / [1–p(1–q)n]	

–  p(X=1 | A=1) = (1–p) / [1–p(1–q)n]	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #27	

Entropies	

•  H(X) = –p lg p – (1–p) lg (1–p) 	

•  H(X | A) = –p[1–(1–q)n] lg p	

	
 	
– p[1–(1–q)n] lg [1–(1–q)n]	

	
 	
+ [1–p(1–q)n] lg [1–p(1–q)n] 	

	
 	
– (1–p) lg (1–p)	

•  I(A;X) = 	
–p(1–q)n lg p	

	
 	
+ p[1–(1–q)n] lg [1–(1–q)n]	

	
 	
– [1–p(1–q)n] lg [1–p(1–q)n]	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #28	

Capacity	

•  Maximize this with respect to p (probability
that High sends 0)	

– Notation: m = (1–q)n, M = (1–m)(1–m)	

– Maximum when p = M / (Mm+1)	

•  Capacity is:	

	
I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)	

(Mm+1)	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #29	

Mitigation of Covert Channels	

•  Problem: these work by varying use of shared

resources	

•  One solution	

–  Require processes to say what resources they need
before running	

–  Provide access to them in a way that no other process
can access them	

•  Cumbersome	

–  Includes running (CPU covert channel)	

–  Resources stay allocated for lifetime of process	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #30	

Alternate Approach	

•  Obscure amount of resources being used	

– Receiver cannot distinguish between what the

sender is using and what is added	

•  How? Two ways:	

– Devote uniform resources to each process	

–  Inject randomness into allocation, use of

resources	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #31	

Uniformity	

•  Variation of isolation	

– Process can’t tell if second process using

resource	

•  Example: KVM/370 covert channel via

CPU usage	

– Give each VM a time slice of fixed duration	

– Do not allow VM to surrender its CPU time	

•  Can no longer send 0 or 1 by modulating CPU usage	

March 5, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #32	

