Deadlock

- 1. Types of resources
 - a. serially reusable resource
 - b. consumable resource
- 2. Deadlock
- 3. Approaches to solving the problem
 - a. avoidance
 - b. prevention
 - c. detection and recovery
- 4. System model
 - a. states: process blocked, deadlocked; deadlock, safe states
 - b. system: resource graph, with resource and process nodes, and request, assignment edges
 - c. operations: request, acquire, release
- 5. Graph theory
 - a. sinks, isolated nodes
 - b. cycles, reach, knot
- 6. Deadlock detection with serially reusable resources
 - a. Graph reduction
 - b. Deadlock Theorem
 - c. Cycle Theorem (general)
 - d. Continuous deadlock detection: when do you have to look?
 - e. Expedient states and the Knot Theorem
 - f. Cycle Theorem (Single Unit Resources)
 - g. Single unit requests in expedient states
- 7. Deadlock recovery
 - a. lowest termination cost first
 - b. minimum cost recovery
 - c. process pre-emption
- 8. Deadlock prevention
 - a. necessary and sufficient conditions
 - b. collective request method
 - c. pre-emption
 - d. ordered request method
- 9. Deadlock avoidance
 - a. maximum claim graphs
 - b. Banker's algorithm
- 10. Consumable resources
 - a. general properties
 - b. known producers, unknown consumers: deadlock detection
 - c. order of reductions
 - d. theorems
 - e. recovery
 - f. known producers and known consumers
 - g. claim-limited state
- 11. General Resource Graph
 - a. Results