

Outline for January 11, 2001 ECS 251 – Winter 2001 Page 1

Last modified at 12:33 pm on Wednesday, January 10, 2001

Outline for January 11, 2001

1. Greetings and felicitations!
a. First part of project due Friday
b. Web page up and running!

2. Process models
a. Theorem: If a system is mutually noninterfering, it is determinate.
b. Theorem: Let

f

p

 be an interpretation of process

p

. Let

∏

 be a system of processes, with

p

∈

∏

. If for all such

p

,

domain

(

p

)

≠

 Ø and

range

(

p

)

≠

 Ø, but

f

p

 unspecified, is determinate for all

f

p

, then all processes in

∏

 are
mutually noninterfering

c. Maximally parallel system: determinate system for which the removal of any pair from the relation

→

 makes
the two processes in the pair interfering processes.

3. Critical section problem
a. Mutual exclusion
b. Progress
c. Bounded wait

4. Classical problems
a. Producer/consumer
b. Readers/writers (first: readers priority; second: writers priority)
c. Dining philosophers

5. Basic language constructs
a. Semaphores
b. Send/receive

6. Evaluating higher-level language constructs
a. Modularity
b. Constraints
c. Expressive power
d. Ease of use
e. Portability
f. Relationship with proram structure
g. Process failures, unanticipated faults (exception handling)
h. Real-time systems

7. Higher-level language constructs
a. Monitors
b. Crowd monitors
c. Invariant expressions
d. CSP
e. RPC
f. ADA™

Mutual Non-Interference and Determinism ECS 251 – Winter 2001 Page 2

Last modified at 12:33 pm on Wednesday, January 10, 2001

Mutual Non-Interference and Determinism

Introduction

A determinate system of processes is a set of process that always produces the same output given the same input.
A mutually non-interfering set of processes is a set of processes that do not interfere with the input or output of one
another. The question is, to what degree are these the same concepts?

Formal Definitions and Notations

• A system of processes

S

 = (

∏

,

→

) is a set of processes

∏

 = {

p

1

, …,

p

n

 } and a precedence relation

→

:

∏

×

∏

.
The

→

 relation is a partial ordering (we define

p

→

p

 as true). When

p

→

q

, process

p

 must complete before pro-
cess

q

 may begin.

• Each process

p

∈

∏

 has an associated set of input memory locations called

domain

(p) and an associated set of
output memory locations

range

(

p

)

≠

∅

. An interpretation

f

p

 of

p

 associates values with each set of memory loca-
tions. The set of all inputs to

S

 is abbreviated

domain

(

S

), and the set of all outputs from

S

 is abbreviated

range

(

S

).

• Two systems of processes

S

 = (

∏

,

→

) and

S

’ = (

∏

’,

→

’) are equivalent if
a.

∏

 =

∏

’;
b.

→

≠

→

’; and
c. if

S

 and

S

’ are given the same element of

domain

(

S

), then they output the same element of

range

(

S

).

• An execution sequence

α

 is any string of process initiation and termination events satisfying the precedence con-
straints of the system.

•

V

(

M

i

,

α

) is the sequence of values written into memory location

M

i

 at the termination of processes in

α

. The
final value stored in

M

i

 after execution sequence

α

 completes is represented by

F

(

M

i

,

α

).

• A determinate system of processes is a system of processes

S

 for which each element of

domain

(

S

) produces the
same set

range

(

S

) regardless of the order or overlapping of the elements of

S

. More formally, a system

S

 is deter-
minate if, for any initial state and for all execution sequences

α

 and

α

’ of

S

,

V

(

M

i

,

α

) =

V

(

M

i

,

α

’)

• A mutually noninterfering system of processes is a system of processes

S

 in which all pairs of processes meet the
Bernstein conditions. Processes

p

 and

q

 are noninterfering if either process is a predecessor of the other, or the
processes satisfy the Bernstein conditions.

• The initiation of a process

p

 is writtten

p

, and the termination of

p

 is written

p

.

Relationship of Determinate Systems and Mutually Noninterfering Systems

Theorem 1

: If a system is mutually non-interfering, it is determinate.

Theorem 2

: Let

S

 be a system with

domain

(

p

) and

range

(

p

) specified,

range

(

p

)

≠

∅

, for all

p

∈

∏

, and

f

p

 unspeci-
fied. Then if

S

 is determinate for all

f

p

, it is mutually non-interfering.

Proofs

The following lemma is helpful:

Lemma

: Let

S

 be a mutually noninterfering system. Let

p

 be a terminal process of

S

. If

α

 =

β

p

γ

p

δ

 is an execution
sequence of

S

, then

α

’ =

βγδ

pp

 is an execution sequence of

S

 for which

V

(

M

i

,

α

) =

V

(

M

i

,

α

’) for all

i

.

Proof

: As

p

 is a terminal process in

S

, it has no successors in

S

. Hence

α

’ satisfies the precedence constraints of

S

. So

α’ is an execution sequence. We now consider two cases.
1. Mi ∉ range(p). Note p does not write memory locations not in range(p). Consider any process p’ with p’ in δ. As

p and p’ are mutually noninterfering, range(p) ∩ domain(p’) = ∅ . So all such p’ find the same values in
domain(p’) whether the execution sequence is α or α’. Thus, V(Mi, α) = V(Mi, α’).

2. Mi ∈ range(p). Let p’ in γδ. As p and p’ are mutually noninterfering, domain(p) ∩ range(p’) = ∅ . So no p’ in γδ
writes into an element of domain(p). Hence for all Mj ∈ domain(p), V(Mj, β) = V(Mj, βγδ). By definition, for all
Mj ∈ domain(p), F(Mj, β) = F(Mj, βγδ). As p has the same input for both α and α’, it writes the same value into

Mutual Non-Interference and Determinism ECS 251 – Winter 2001 Page 3

Last modified at 12:33 pm on Wednesday, January 10, 2001

each Mi ∈ range(p) in α and α’. Let v denote the value that p writes into Mi in α. Then
V(Mi, α) = V(Mi, βpγpδ) as no process p’ in δ writes into an element of range(p)

= (V(Mi, βpγ), v) as p writes v into Mi

= (V(Mi, β), v) as no process p’ in γ writes into an element of range(p)
= (V(Mi, bγδ), v) as no process p’ in γ writes into an element of range(p)
= V(Mi, bγδpp) as p writes v into Mi

= V(Mi, α’)

This proves the lemma. ■
Proof of Theorem 1: We proceed by induction on the number k of processes in a system.
Basis: k = 1. The claim is trivially true.
Hypothesis: For k = 1, …, n–1, if a system of k processes is mutually noninterfering, it is determinate.
Step: Let S be an n process system of mutually noninterfering processes.

If S has exactly one execution sequence, it is determinate. So, assume that S has two distinct execution sequences
α and β.

Let p be a terminal process of S, and form α’ and β’ according to the lemma. Then
α’ = α’’pp V(Mi, α) = V(Mi, α’) for all i such that 1 ≤ i ≤ m
β’ = β’’pp V(Mi, β) = V(Mi, β’) for all i such that 1 ≤ i ≤ m

Now form the n–1 process system S’ = (∏ – { p }, →’), where →’ is formed by deleting from → all pairs with p in
them. Clearly, α’’ and β’’ are execution sequences of S’. Further, by the induction hypothesis, V(Mi, α’’) = V(Mi, β’’)
for all i such that 1 ≤ i ≤ m. This means that the values in the elements of domain(p) are the same in both α’’ and β’’;
in other words, F(Mj, α’’) = F(Mj, β’’) for all Mj ∈ domain(p). As the inputs for p are the same in both execution
sequences, the outputs will also be the same. It follows that p writes the same value v into Mi ∈ range(p) in both α’
and β’.

Hence for Mi ∉ range(p):
V(Mi, α) = V(Mi, α’) by the lemma

= V(Mi, α’’) as Mi ∉ range(p)
= V(Mi, β’’) by the induction hypothesis
= V(Mi, β’) as Mi ∉ range(p)
= V(Mi, β) by the lemma

and for Mi ∈ range(p):
V(Mi, α) = V(Mi, α’) by the lemma

= (V(Mi, α’’), v) p writes v into Mi

= (V(Mi, β’’), v) by the induction hypothesis
= (V(Mi, β’), v) p writes v into Mi

= V(Mi, β) by the lemma
Either way, V(Mi, α) = V(Mi, β). Hence S is determinate, completing the induction step and the proof. ■

Proof of Theorem 2: We prove this theorem by contradiction. Let S be a determinate system. Let p, p’ ∈ ∏ be inter-
fering processes. Then there exist execution sequences

α = βppp’p’γ
α’ = βp’p’ppγ

Consider the Bernstein conditions. As p and p’ are interfering, at least one of those conditions does not hold. We
examine them separately.
1. Let Mi ∈ range(p) ∩ range(p’). We choose the interpretation fp so that p writes the value u into Mi, and we

choose the interpretation fp’ so that p’ writes the value v into Mi, and u ≠ v. But then
V(Mi, βppp’p’) = (V(Mi, β), u, v)
and
V(Mi, βp’p’pp) = (V(Mi, β), v, u).
This means S is not determinate, contradicting hypothesis. So range(p) ∩ range(p’) = ∅ .

2. Let Mi ∈ domain(p) ∩ range(p’). As range(p) ≠ ∅ , take Mi ∈ range(p). Choose the interpretation fp’ so that p

Mutual Non-Interference and Determinism ECS 251 – Winter 2001 Page 4

Last modified at 12:33 pm on Wednesday, January 10, 2001

reads different values in α and α’; that is, F(Mj, β) ≠ F(Mj, βp’p’) for some j such that 1 ≤ j ≤ m. Also, choose fp
so that p writes u in α and v in α’, where u ≠ v. But then
V(Mi, βppp’p’) = V(Mi, βpp) as range(p) ∩ range(p’) = Ø

= (V(Mi, β), u)
V(Mi, βp’p’pp) = (V(Mi, βp’p’), v)

= (V(Mi, β), v) as range(p) ∩ range(p’) = Ø
As u ≠ v, this means that S is not determinate, contradicting hypothesis. So domain(p) ∩ range(p’) = ∅ . [As an
aside, if range(p) = ∅ , then Mi ∉ range(p) and p and p’ are noninterfering. Hence there is no contradiction.]

3. By symmetry, the argument for case 2 also shows that range(p) ∩ domain(p’) = ∅ .
In all three cases, the Bernstein conditions must hold. This completes the proof. ■

	Outline for January 11, 2001
	Mutual Non-Interference and Determinism
	Introduction
	Formal Definitions and Notations
	Relationship of Determinate Systems and Mutually Noninterfering Systems
	Proofs

