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Outline for January 11, 2001

 

1. Greetings and felicitations!
a. First part of project due Friday
b. Web page up and running!

2. Process models
a. Theorem: If a system is mutually noninterfering, it is determinate.
b. Theorem: Let 

 

f

 

p

 

 be an interpretation of process 

 

p

 

. Let 

 

∏

 

 be a system of processes, with 

 

p

 

 

 

∈

 

 

 

∏

 

. If for all such 

 

p

 

, 

 

domain

 

(

 

p

 

) 

 

≠

 

 Ø and 

 

range

 

(

 

p

 

) 

 

≠

 

 Ø, but 

 

f

 

p

 

 unspecified, is determinate for all 

 

f

 

p

 

, then all processes in 

 

∏

 

 are 
mutually noninterfering

c. Maximally parallel system: determinate system for which the removal of any pair from the relation 

 

→

 

 makes 
the two processes in the pair interfering processes.

3. Critical section problem
a. Mutual exclusion
b. Progress
c. Bounded wait

4. Classical problems
a. Producer/consumer
b. Readers/writers (first: readers priority; second: writers priority)
c. Dining philosophers

5. Basic language constructs
a. Semaphores
b. Send/receive

6. Evaluating higher-level language constructs
a. Modularity
b. Constraints
c. Expressive power
d. Ease of use
e. Portability
f. Relationship with proram structure
g. Process failures, unanticipated faults (exception handling)
h. Real-time systems

7. Higher-level language constructs
a. Monitors
b. Crowd monitors
c. Invariant expressions
d. CSP
e. RPC
f. ADA™
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Mutual Non-Interference and Determinism

 

Introduction

 

A determinate system of processes is a set of process that always produces the same output given the same input. 
A mutually non-interfering set of processes is a set of processes that do not interfere with the input or output of one 
another. The question is, to what degree are these the same concepts?

 

Formal Definitions and Notations

 

• A system of processes 

 

S

 

 = (

 

∏

 

, 

 

→

 

) is a set of processes 

 

∏

 

 = { 

 

p

 

1

 

, …, 

 

p

 

n

 

 } and a precedence relation 

 

→

 

: 

 

∏

 

×

 

∏

 

. 
The 

 

→

 

 relation is a partial ordering (we define 

 

p

 

 

 

→

 

 

 

p

 

 as true). When 

 

p

 

 

 

→

 

 

 

q

 

, process 

 

p

 

 must complete before pro-
cess 

 

q

 

 may begin.

• Each process 

 

p

 

 

 

∈

 

 

 

∏

 

 has an associated set of input memory locations called 

 

domain

 

(p) and an associated set of 
output memory locations 

 

range

 

(

 

p

 

) 

 

≠

 

 

 

∅

 

. An interpretation 

 

f

 

p

 

 of 

 

p

 

 associates values with each set of memory loca-
tions. The set of all inputs to 

 

S

 

 is abbreviated 

 

domain

 

(

 

S

 

), and the set of all outputs from 

 

S

 

 is abbreviated 

 

range

 

(

 

S

 

).

• Two systems of processes 

 

S

 

 = (

 

∏

 

, 

 

→

 

) and 

 

S

 

’ = (

 

∏

 

’, 

 

→

 

’) are equivalent if
a.

 

∏

 

 = 

 

∏

 

’;
b.

 

→

 

 

 

≠

 

 

 

→

 

’; and
c. if 

 

S

 

 and 

 

S

 

’ are given the same element of 

 

domain

 

(

 

S

 

), then they output the same element of 

 

range

 

(

 

S

 

).

• An execution sequence 

 

α

 

 is any string of process initiation and termination events satisfying the precedence con-
straints of the system.

•

 

V

 

(

 

M

 

i

 

, 

 

α

 

) is the sequence of values written into memory location 

 

M

 

i

 

 at the termination of processes in 

 

α

 

.  The 
final value stored in 

 

M

 

i

 

 after execution sequence 

 

α

 

 completes is represented by 

 

F

 

(

 

M

 

i

 

, 

 

α

 

).

• A determinate system of processes is a system of processes 

 

S

 

 for which each element of 

 

domain

 

(

 

S

 

) produces the 
same set 

 

range

 

(

 

S

 

) regardless of the order or overlapping of the elements of 

 

S

 

. More formally, a system 

 

S

 

 is deter-
minate if, for any initial state and for all execution sequences 

 

α

 

 and 

 

α

 

’ of 

 

S

 

, 

 

V

 

(

 

M

 

i

 

, 

 

α

 

) = 

 

V

 

(

 

M

 

i

 

, 

 

α

 

’)

• A mutually noninterfering system of processes is a system of processes 

 

S

 

 in which all pairs of processes meet the 
Bernstein conditions. Processes 

 

p

 

 and 

 

q

 

 are noninterfering if either process is a predecessor of the other, or the 
processes satisfy the Bernstein conditions.

• The initiation of a process 

 

p

 

 is writtten 

 

p

 

, and the termination of 

 

p

 

 is written 

 

p

 

.

 

Relationship of Determinate Systems and Mutually Noninterfering Systems

 

Theorem 1

 

: If a system is mutually non-interfering, it is determinate.

 

Theorem 2

 

: Let 

 

S

 

 be a system with 

 

domain

 

(

 

p

 

) and 

 

range

 

(

 

p

 

) specified, 

 

range

 

(

 

p

 

) 

 

≠

 

 

 

∅

 

, for all  

 

p

 

 

 

∈

 

 

 

∏

 

, and 

 

f

 

p

 

 unspeci-
fied. Then if 

 

S

 

 is determinate for all 

 

f

 

p

 

, it is mutually non-interfering.

 

Proofs

 

The following lemma is helpful:

 

Lemma

 

: Let 

 

S

 

 be a mutually noninterfering system. Let 

 

p

 

 be a terminal process of 

 

S

 

.  If 

 

α

 

 = 

 

β

 

p

 

γ

 

p

 

δ

 

 is an execution 
sequence of 

 

S

 

, then 

 

α

 

’ = 

 

βγδ

 

pp

 

 is an execution sequence of 

 

S

 

 for which 

 

V

 

(

 

M

 

i

 

, 

 

α

 

) = 

 

V

 

(

 

M

 

i

 

, 

 

α

 

’) for all 

 

i

 

.

 

Proof

 

: As 

 

p

 

 is a terminal process in 

 

S

 

, it has no successors in 

 

S

 

. Hence 

 

α

 

’ satisfies the precedence constraints of 

 

S

 

. So 

 

α’ is an execution sequence. We now consider two cases.
1. Mi ∉  range(p). Note p does not write memory locations not in range(p). Consider any process p’ with p’ in δ. As 

p and p’ are mutually noninterfering, range(p) ∩ domain(p’) = ∅ . So all such p’ find the same values in 
domain(p’) whether the execution sequence is α or α’. Thus, V(Mi, α) = V(Mi, α’).

2. Mi ∈  range(p).  Let p’ in γδ. As p and p’ are mutually noninterfering, domain(p) ∩ range(p’) = ∅ . So no p’ in γδ 
writes into an element of domain(p). Hence for all Mj ∈  domain(p), V(Mj, β) = V(Mj, βγδ). By definition, for all 
Mj ∈  domain(p), F(Mj, β) = F(Mj, βγδ). As p has the same input for both α and α’, it writes the same value into 
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each Mi ∈  range(p) in α and α’.  Let v denote the value that p writes into Mi in α. Then
V(Mi, α) = V(Mi, βpγpδ) as no process p’ in δ writes into an element of range(p)

= (V(Mi, βpγ), v) as p writes v into Mi

= (V(Mi, β), v) as no process p’ in γ writes into an element of range(p)
= (V(Mi, bγδ), v) as no process p’ in γ writes into an element of range(p)
= V(Mi, bγδpp) as p writes v into Mi

= V(Mi, α’)

This proves the lemma. ■
Proof of Theorem 1: We proceed by induction on the number k of processes in a system.
Basis: k = 1. The claim is trivially true.
Hypothesis: For k =  1, …, n–1, if a system of k processes is mutually noninterfering, it is determinate.
Step: Let S be an n process system of mutually noninterfering processes.

If S has exactly one execution sequence, it is determinate. So, assume that S has two distinct execution sequences 
α and β.

Let p be a terminal process of S, and form α’ and β’ according to the lemma. Then
α’ = α’’pp V(Mi, α) = V(Mi, α’) for all i such that 1 ≤ i ≤ m
β’ = β’’pp V(Mi, β) = V(Mi, β’) for all i such that 1 ≤ i ≤ m

Now form the n–1 process system S’ = (∏ – { p }, →’), where →’ is formed by deleting from → all pairs with p in 
them. Clearly, α’’ and β’’ are execution sequences of S’. Further, by the induction hypothesis, V(Mi, α’’) = V(Mi, β’’) 
for all i such that 1 ≤ i ≤ m. This means that the values in the elements of domain(p) are the same in both α’’ and β’’; 
in other words, F(Mj, α’’) = F(Mj, β’’) for all Mj ∈  domain(p). As the inputs for p are the same in both execution 
sequences, the outputs will also be the same. It follows that p writes the same value v into Mi ∈  range(p) in both α’ 
and β’. 

Hence for Mi ∉  range(p):
V(Mi, α) = V(Mi, α’) by the lemma

= V(Mi, α’’) as Mi ∉  range(p)
= V(Mi, β’’) by the induction hypothesis
= V(Mi, β’) as Mi ∉  range(p)
= V(Mi, β) by the lemma

and for Mi ∈  range(p):
V(Mi, α) = V(Mi, α’) by the lemma

= (V(Mi, α’’), v) p writes v into Mi

= (V(Mi, β’’), v) by the induction hypothesis
= (V(Mi, β’), v) p writes v into Mi

= V(Mi, β) by the lemma
Either way, V(Mi, α) = V(Mi, β). Hence S is determinate, completing the induction step and the proof. ■

Proof of Theorem 2: We prove this theorem by contradiction. Let S be a determinate system. Let p, p’ ∈  ∏ be inter-
fering processes. Then there exist execution sequences

α = βppp’p’γ
α’ = βp’p’ppγ

Consider the Bernstein conditions. As p and p’ are interfering, at least one of those conditions does not hold. We 
examine them separately.
1. Let Mi ∈  range(p) ∩ range(p’). We choose the interpretation fp so that p writes the value u into Mi, and we 

choose the interpretation fp’ so that p’ writes the value v into Mi, and u ≠ v. But then
V(Mi, βppp’p’) = (V(Mi, β), u, v)
and
V(Mi, βp’p’pp) = (V(Mi, β), v, u).
This means S is not determinate, contradicting hypothesis. So range(p) ∩ range(p’) = ∅ .

2. Let Mi ∈  domain(p) ∩ range(p’). As range(p) ≠ ∅ , take Mi ∈  range(p). Choose the interpretation fp’ so that p 



Mutual Non-Interference and Determinism ECS 251 – Winter 2001 Page 4

Last modified at 12:33 pm on Wednesday, January 10, 2001

reads different values in α and α’; that is, F(Mj, β) ≠ F(Mj, βp’p’) for some j such that 1 ≤ j ≤ m. Also, choose fp 
so that p writes u in α and v in α’, where u ≠ v.  But then
V(Mi, βppp’p’) = V(Mi, βpp) as range(p) ∩ range(p’) = Ø

= (V(Mi, β), u)
V(Mi, βp’p’pp) = (V(Mi, βp’p’), v)

= (V(Mi, β), v) as range(p) ∩ range(p’) = Ø
As u ≠ v, this means that S is not determinate, contradicting hypothesis. So domain(p) ∩ range(p’) = ∅ . [As an 
aside, if range(p) = ∅ , then Mi ∉  range(p) and p and p’ are noninterfering. Hence there is no contradiction.]

3. By symmetry, the argument for case 2 also shows that range(p) ∩ domain(p’) = ∅ .
In all three cases, the Bernstein conditions must hold. This completes the proof. ■
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