Outline for January 11, 2001

- 1. Greetings and felicitations!
 - a. First part of project due Friday
 - b. Web page up and running!
- 2. Process models
 - a. Theorem: If a system is mutually noninterfering, it is determinate.
 - b. Theorem: Let f_p be an interpretation of process p. Let \prod be a system of processes, with $p \in \prod$. If for all such p, $domain(p) \neq \emptyset$ and $range(p) \neq \emptyset$, but f_p unspecified, is determinate for all f_p , then all processes in \prod are mutually noninterfering
 - c. Maximally parallel system: determinate system for which the removal of any pair from the relation \rightarrow makes the two processes in the pair interfering processes.
- 3. Critical section problem
 - a. Mutual exclusion
 - b. Progress
 - c. Bounded wait
- 4. Classical problems
 - a. Producer/consumer
 - b. Readers/writers (first: readers priority; second: writers priority)
 - c. Dining philosophers
- 5. Basic language constructs
 - a. Semaphores
 - b. Send/receive
- 6. Evaluating higher-level language constructs
 - a. Modularity
 - b. Constraints
 - c. Expressive power
 - d. Ease of use
 - e. Portability
 - f. Relationship with proram structure
 - g. Process failures, unanticipated faults (exception handling)
 - h. Real-time systems
- 7. Higher-level language constructs
 - a. Monitors
 - b. Crowd monitors
 - c. Invariant expressions
 - d. CSP
 - e. RPC
 - f. ADATM

Mutual Non-Interference and Determinism

Introduction

A determinate system of processes is a set of process that always produces the same output given the same input. A mutually non-interfering set of processes is a set of processes that do not interfere with the input or output of one another. The question is, to what degree are these the same concepts?

Formal Definitions and Notations

- A system of processes S = (∏, →) is a set of processes ∏ = { p₁, ..., p_n } and a precedence relation →: ∏×∏. The → relation is a partial ordering (we define p → p as true). When p → q, process p must complete before process q may begin.
- Each process p ∈ ∏ has an associated set of input memory locations called *domain*(p) and an associated set of output memory locations range(p) ≠ Ø. An interpretation f_p of p associates values with each set of memory locations. The set of all inputs to S is abbreviated *domain*(S), and the set of all outputs from S is abbreviated range(S).
- Two systems of processes $S = (\prod, \rightarrow)$ and $S' = (\prod', \rightarrow')$ are equivalent if
 - a. $\Pi = \Pi$ ';
 - b. $\rightarrow \neq \rightarrow$; and
 - c. if *S* and *S*' are given the same element of *domain*(*S*), then they output the same element of *range*(*S*).
- An execution sequence α is any string of process initiation and termination events satisfying the precedence constraints of the system.
- $V(M_i, \alpha)$ is the sequence of values written into memory location M_i at the termination of processes in α . The final value stored in M_i after execution sequence α completes is represented by $F(M_i, \alpha)$.
- A determinate system of processes is a system of processes *S* for which each element of *domain*(*S*) produces the same set range(S) regardless of the order or overlapping of the elements of *S*. More formally, a system *S* is determinate if, for any initial state and for all execution sequences α and α' of *S*, $V(M_i, \alpha) = V(M_i, \alpha')$
- A mutually noninterfering system of processes is a system of processes *S* in which all pairs of processes meet the Bernstein conditions. Processes *p* and *q* are noninterfering if either process is a predecessor of the other, or the processes satisfy the Bernstein conditions.
- The initiation of a process p is written \overline{p} , and the termination of p is written <u>p</u>.

Relationship of Determinate Systems and Mutually Noninterfering Systems

Theorem 1: If a system is mutually non-interfering, it is determinate.

Theorem 2: Let *S* be a system with *domain*(*p*) and *range*(*p*) specified, $range(p) \neq \emptyset$, for all $p \in \prod$, and f_p unspecified. Then if *S* is determinate for all f_p , it is mutually non-interfering.

Proofs

The following lemma is helpful:

Lemma: Let *S* be a mutually noninterfering system. Let *p* be a terminal process of *S*. If $\alpha = \beta \overline{p} \gamma p \delta$ is an execution sequence of *S*, then $\alpha' = \beta \gamma \delta \overline{p} p$ is an execution sequence of *S* for which $V(M_i, \alpha) = V(M_i, \alpha')$ for all *i*.

Proof: As *p* is a terminal process in *S*, it has no successors in *S*. Hence α ' satisfies the precedence constraints of *S*. So α ' is an execution sequence. We now consider two cases.

- M_i ∉ range(p). Note p does not write memory locations not in range(p). Consider any process p' with p' in δ. As p and p' are mutually noninterfering, range(p) ∩ domain(p') = Ø. So all such p' find the same values in domain(p') whether the execution sequence is α or α'. Thus, V(M_i, α) = V(M_i, α').
- 2. $M_i \in range(p)$. Let $\overline{p'}$ in $\gamma\delta$. As *p* and *p'* are mutually noninterfering, $domain(p) \cap range(p') = \emptyset$. So no *p'* in $\gamma\delta$ writes into an element of domain(p). Hence for all $M_j \in domain(p)$, $V(M_j, \beta) = V(M_j, \beta\gamma\delta)$. By definition, for all $M_j \in domain(p)$, $F(M_j, \beta) = F(M_j, \beta\gamma\delta)$. As *p* has the same input for both α and α' , it writes the same value into

each $M_i \in range(p)$ in α and α' . Let v denote the value that p writes into M_i in α . Then

$V(M_i, \alpha) = V(M_i, \beta \overline{p} \gamma \underline{p} \delta)$	as no process p' in δ writes into an element of $range(p)$
$=(V(M_i,\beta \overline{p}\gamma), v)$	as p writes v into M_i
$=(V(M_i,\beta), v)$	as no process p' in γ writes into an element of $range(p)$
$=(V(M_i, b\gamma\delta), v)$	as no process p' in γ writes into an element of $range(p)$
$= V(M_i, bγ\delta \overline{pp})$	as p writes v into M_i
$= V(M_i, \alpha')$	

This proves the lemma.

Proof of Theorem 1: We proceed by induction on the number k of processes in a system. *Basis*: k = 1. The claim is trivially true.

Hypothesis: For k = 1, ..., n-1, if a system of k processes is mutually noninterfering, it is determinate. *Step*: Let S be an n process system of mutually noninterfering processes.

If *S* has exactly one execution sequence, it is determinate. So, assume that S has two distinct execution sequences α and β .

Let *p* be a terminal process of *S*, and form α ' and β ' according to the lemma. Then

 $\alpha' = \alpha'' \overline{pp} \qquad V(M_i, \alpha) = V(M_i, \alpha') \quad \text{for all } i \text{ such that } 1 \le i \le m$ $\beta' = \beta'' \overline{pp} \qquad V(M_i, \beta) = V(M_i, \beta') \quad \text{for all } i \text{ such that } 1 \le i \le m$

Now form the *n*-1 process system $S' = (\prod - \{p\}, \rightarrow')$, where \rightarrow' is formed by deleting from \rightarrow all pairs with *p* in them. Clearly, α'' and β'' are execution sequences of *S'*. Further, by the induction hypothesis, $V(M_i, \alpha'') = V(M_i, \beta'')$ for all *i* such that $1 \le i \le m$. This means that the values in the elements of *domain(p)* are the same in both α'' and β'' ; in other words, $F(M_j, \alpha'') = F(M_j, \beta'')$ for all $M_j \in domain(p)$. As the inputs for *p* are the same in both execution sequences, the outputs will also be the same. It follows that *p* writes the same value *v* into $M_i \in range(p)$ in both α' and β' .

Hence for $M_i \notin range(p)$:

$= V(M_i, \alpha')$	by the lemma
$= V(M_i, \alpha")$	as $M_i \notin range(p)$
$= V(M_i, \beta")$	by the induction hypothesis
$= V(M_i, \beta')$	as $M_i \notin range(p)$
$= V(M_i, \beta)$	by the lemma
ange(p):	
$= V(M_i, \alpha')$	by the lemma
$=(V(M_i, \alpha"), v)$	p writes v into M_i
$=(V(M_i, \beta"), v)$	by the induction hypothesis
$= (V(M_i, \beta'), v)$	p writes v into M_i
$= V(M_i, \beta)$	by the lemma
	$= V(M_i, \alpha'')$ $= V(M_i, \beta'')$ $= V(M_i, \beta')$ $= V(M_i, \beta)$ ange(p): $= V(M_i, \alpha')$ $= (V(M_i, \alpha''), v)$ $= (V(M_i, \beta''), v)$

Either way, $V(M_i, \alpha) = V(M_i, \beta)$. Hence *S* is determinate, completing the induction step and the proof. **Proof of Theorem 2**: We prove this theorem by contradiction. Let *S* be a determinate system. Let *p*, *p*' $\in \prod$ be interfering processes. Then there exist execution sequences

and processes. Then there exist $\alpha = \frac{8\pi n n^2}{n^2}$

 $\alpha = \beta \overline{p} \underline{p} \overline{p'} \underline{p'} \gamma$ $\alpha' = \beta \overline{p'} \underline{p'} \overline{p} \underline{p} \gamma$

Consider the Bernstein conditions. As *p* and *p*' are interfering, at least one of those conditions does not hold. We examine them separately.

1. Let $M_i \in range(p) \cap range(p')$. We choose the interpretation f_p so that p writes the value u into M_i , and we choose the interpretation f_p so that p' writes the value v into M_i , and $u \neq v$. But then

 $V(M_i, \beta \overline{p} \overline{p} \overline{p'} \underline{p'}) = (V(M_i, \beta), u, v)$ and

 $V(M_i, \beta \overline{p' p' p}) = (V(M_i, \beta), v, u).$

This means *S* is not determinate, contradicting hypothesis. So $range(p) \cap range(p') = \emptyset$.

2. Let $M_i \in domain(p) \cap range(p')$. As $range(p) \neq \emptyset$, take $M_i \in range(p)$. Choose the interpretation $f_{p'}$ so that p

reads different values in α and α' ; that is, $F(M_j, \beta) \neq F(M_j, \beta \overline{p'p'})$ for some j such that $1 \le j \le m$. Also, choose f_p so that p writes u in α and v in α' , where $u \ne v$. But then

 $V(M_i, \beta \overline{p} \underline{p} \overline{p'} \underline{p'}) = V(M_i, \beta \overline{p} \underline{p}) \quad \text{as } range(p) \cap range(p') = \emptyset$ $= (V(M_i, \beta), u)$ $V(M_i, \beta \overline{p'} \underline{p'} \underline{p} \underline{p}) = (V(M_i, \beta \overline{p'} \underline{p'}), v)$ $= (V(M_i, \beta), v) \quad \text{as } range(p) \cap range(p') = \emptyset$

As $u \neq v$, this means that *S* is not determinate, contradicting hypothesis. So $domain(p) \cap range(p') = \emptyset$. [As an aside, if $range(p) = \emptyset$, then $M_i \notin range(p)$ and *p* and *p*' are noninterfering. Hence there is no contradiction.]

3. By symmetry, the argument for case 2 also shows that $range(p) \cap domain(p') = \emptyset$.

In all three cases, the Bernstein conditions must hold. This completes the proof.