Outline for February 8, 2001 ECS 251 — Winter 2001 Page 1

Outline for February 8, 2001

1. Greetings and felicitations!
2. Maekawa’s’s
a. Request sets satisfy the following conditions:
i. foralll<i,jsnwithizj,Rn RJ z0
i. foralll<isnpOR
ii. foralll<i<n |R|=K
iv. p is contained ifK number ofR;.
b. Idea: every pair of processes has has a mediator (in both request sets) to mediate conflicts
c. Only one outstanding REPLY per process, so each process gives permission to enter to only one other pro-
cess
d. Assumes messages delivered in order which they are sent
e. To avoid deadlock, can INQUIRE whether someone cannot get it
f. A FAILED message just means someone else is going in out of order
g. Performance: betweenN and5vVN messages
3. Sanders’ generalized protocol
a. Inform set; is set of processes to be informed wheenters or leaves CS
b. Status se8T contains pids for whicp; maintains status information; nom:U I; O p; U ST,
c. |Ifp Ol foralli, then necessary and sufficient conditions to guarantee mutual exclusion are:
i LOR
i. linljz0or @ URjandp UR)
4. Suzuki-Kasami’s broadcast protocol
a. token-based
b. uses sequence numbers, not clocks
c. token has sequence numbers, associated queue
d. how to handle stale requests? token'’s sequence number too high
5. Raymond’s tree-based protocol
a. token-based
b. think of token as at root of tree, root moves around

Last modified at 7:03 pm on Tuesday, February 27, 2001

Maekawa’s Distributed Mutual Exclusion ProtocolECS 251 — Winter 2001 Page 2

Maekawa'’s Distributed Mutual Exclusion Protocol

Introduction

Maekawa’s algorithm uses s&§of fewer tham processes. Also, a proces$ocks all the nodes i§ by having only
one reply message out at a time. Each process has a queue of unsatisfied requests ordered by timestamp.

Notation
* N Processepy, ..., Py
. tj timestamp

Protocol

1. To enter the critical sectiop, sends REQUEST(i) to all sites irS.
2. Whenp; receives a REQUEST (i) message:
a. if it has not sent a REPLYmessage to any site since the last RELEASE npessegigedp; sends
REPLY(IJ, ,]) to B;-
b. Otherwise, there is a procggssuch thap; has already sent a REPLILY(j) message tpy. Then:
i if (4, 1) < (t K), p; sends an INQUIREX message tp, and places the REQUEST on its queue.
ii. Otherwise,p; sends a FAILEQ] message tp;.
3. Whenp, receives an INQUIREX message, it sends a YEIUMmessage if either of the following conditions are

met:
a. pyhas received a FAILED message from a sit§in

b. p,has sent a YIELD) message to a sifi, 0 S, and has not received a REPLY in reply.

Otherwisep, does nothing.

4. Whenp; receives a YIELDK) messagey; places REQUEST K) in the queue and sends a RERLY] to the
site whose request is first in the queue.

5. Whenp; receives a RELEASE(i) message, it sends a REPLY{) message to the next site in the queue and
deletes the entry from the queue. If the queue is epipdates its state to reflect that no REPLY message has
been sent to any site since the last RELEASE megsageeived.

6. p; enters the critical section when it has received REPLY messages from all proc&sses in

7. Whenp; leaves the critical section, it sends RELEASEYto all sites irfS.

Last modified at 7:03 pm on Tuesday, February 27, 2001

Maekawa’s Distributed Mutual Exclusion ProtocolECS 251 — Winter 2001 Page 3

Example

There are 13 processes. Initially, all logical clocks are set to 0. The sets are:

$={1,2,3,4} $={4,6,10,11} S;={2,7,10,13} Si0={3.,5,10,12}
$={2,5,811} $={1,5,6,7} $={1,8,9,10} Si1={1,11,12,13}
$={3,6,8,13} $={2,6,9 12} $={3,7,9 11} S,={4,7,8,12}

Si3={4,5,9,13}

pll sends REQUEST(O, 11) to p1, p12, p13.

pl2 receives REQUEST(0, 11) and sends REPLY(1, 12) to p11.

pl3 receives REQUEST(0, 11) and sends REPLY(1, 13) to p11.

p7 sends REQUEST(0, 7) to p2, p10, p13.

p2 receives REQUEST(0, 7) and sends REPLY(1, 2) to p7.

p10 receives REQUEST(0, 7) and sends REPLY(1, 10) to p7.

p8 sends REQUEST(0, 8) to p1, p9, p10.

pl receives REQUEST(0, 8) and sends REPLY(1, 1) to p8.

p9 receives REQUEST(0, 8) and sends REPLY(1, 9) to p8.

pl10 receives REQUEST(O, 8). It already sent a REPLY to p7. p7’'s request is timestamped (0, 7) < (0, 8). p10 sends
FAILED(10) to p8.

pl receives REQUEST(0, 11). It already sent a REPLY to p8. p8's request is timestamped (0, 8) < (0, 11). p1 sends
FAILED(1) to p11.

pl3 receives REQUEST(O, 7). It already sent a REPLY to pll. pl11's request is timestamped (0, 11), and (0, 7) < (O,
11). p13 sends INQUIRE(13) to p11.

pll receives INQUIRE(13). It has received a FAILED(1) message from pl. p11l sends YIELD(11) to p13.

pl3 receives YIELD(11). It now sends REPLY(2, 7) to p7 and places REQUEST(0, 11) in its queue.

p7 has received replies from all processes . It enters the critical section.

p7 leaves the critical section and sends RELEASE(1000, 7) to p2, p10, p13.

p10 receives RELEASE(1000, 7).

p10 sends REPLY(1001, 8).

p8 has received replies from all processes . It enters the critical section.

p8 leaves the critical section and sends RELEASE(1003, 8) to p1, p9, p10.

pl receives RELEASE(1003, 8).

pl sends REPLY(1004, 1).

pl1 has received replies from all processes 83 ;. It enters the critical section.

pll leaves the critical section and sends RELEASE(1005, 11) to p1, p12, p13.

Last modified at 7:03 pm on Tuesday, February 27, 2001

Sanders’ Generalized Protocol ECS 251 — Winter 2001 Page 4

Sanders’ Generalized Protocol

Introduction

This protocol is a generalization of the previous protocols.

Notation

n processes
p; process

R request set fap;

l; inform set forp;

ST status set fop,

CSSTATite's knowledge of state of critical section

Protocol

1.
2.

e

To request entry; sends REQUEST(i) to all sites irR,.
When a sit@; gets a REQUEST|(j) message:

a. it places the request onto its queue, which is ordered by timestamps
b. if CSSTABays the critical section is frgg sends a GRANT message to the first propgésthe queue and

deletes its entry from the queuep{fd ST, thenCSSTATs set to indicate thak is in the critical section.
Whenp; has received GRANT messages from all process®s finenters the critical section.
Whenp; leaves the critical sectiop, sends a RELEASE message to every site in
Whenp; receives a RELEASE message:

a. CSSTATSs set to free
b. If pj queue is not emptp; sends a GRANT to the first procggsn the queue and deletes its entry from the

queue. Ifps O ST, thenCSSTATs set to indicate thak is in the critical section.
c. Repeat step b until eith€SSTATndicates a process has entered the critical sectigisa@ueue is empty.

Last modified at 7:03 pm on Tuesday, February 27, 2001

Sanders’ Generalized Protocol ECS 251 — Winter 2001 Page 5

Example

There are three processps,p,, andps. p; andps seek mutually exclusive access to a shared resource. Let:
liy={pp3} l2={p2} I3={p3}, s0STy={ p1}, SL={p2}, Sl3={p1, p3}; and
Re={pyu P2 Pz} Ro={py PPz} Re={ P2 P3}
These satisfy the criteria that, for glp; U 1;, I; U R;, and for all pairsi(j), eitherl; n I; # [or (o U Rj andp; U R)).
Initially:
pl state: C1 =0, Q1 empty, CSSTAT1 empty
p2 state: C2 =0, Q2 empty, CSSTAT2 empty
p3 state: C3 =0, Q3 empty, CSSTAT3 empty
pl sends Q(0,1) to p1, p2 and p3; pl's state now C1 = 1, Q1 empty, CSSTAT1 empty, GRANTS1 empty
pl receives Q(0,1) from p1; pl's state now C1 =1, Q1 = Q(0,1), CSSTAT1 empty, GRANTS1 empty
pl sends G(1,1) to p1; pl's state now C1 = 2, Q1 empty, CSSTAT1 = p1, GRANTS1 empty
pl receives G(1,1) to pl; pl’s state now C1 = 2, Q1 empty, CSSTAT1 = p1, GRANTS1 G(1,1)
p3 sends Q(0,3) to p2 and p3; p3’s state now C3 = 1, Q3 empty, CSSTAT3 empty, GRANTS3 empty
p3 receives Q(0,3) from p3; p3’s state now C3 = 1, Q3 = Q(0,3), CSSTAT3 empty, GRANTS3 empty
p3 sends G(1,3) to p3; p3's state now C3 = 2, Q3 empty, CSSTAT3 = p3, GRANTS3 empty
p3 receives G(1,3) from p3; p3’s state now C3 = 2, Q3 empty, CSSTAT3 = p3, GRANTS3 G(1,3)
p2 receives Q(0,1) from p1; p2’s state now C2 = 2, Q2 = Q(0,1), CSSTAT2 empty, GRANTS2 empty
p2 sends G(2,2) to pl; p2’'s state now C2 = 3, Q2 empty, CSSTAT2 empty, GRANTS2 empty
p2 receives Q(0,3) from p3; p2’s state now C2 = 3, Q2 = Q(0,3), CSSTAT2 empty, GRANTS2 empty
p2 sends G(3,2) to p3; p2's state now C2 = 4, Q2 empty, CSSTAT2 empty, GRANTS2 empty
p3 receives Q(0,1) from p1l; p3’s state now C3 = 2, Q3 = Q(0,1), CSSTAT3 = p3, GRANTS3 G(1,3)
pl receives G(2,2) from p2; pl’s state now C1 = 2, Q1 empty, CSSTATL1 = p1l, GRANTS1 G(1,1), G(2,2)
p3 receives G(3,2) from p2; p3’s state now C3 = 3, Q3 = Q(0,1), CSSTAT3 = p3, GRANTS3 G(1,3), G(3,2)
p3 enters its critical section
p3 exits its critical section
p3 sends R(3,3) to p3; p3’s state now C3 = 4, Q3 empty, CSSTAT3 = p3, GRANTS3 empty
p3 receives R(3, 3) from p3; p3's state now C3 = 4, Q3 = Q(0,1), CSSTAT3 empty, GRANTS3 empty
p3 sends G(4, 3) to pl; p3's state now C3 =5, Q3 empty, CSSTAT3 = p1, GRANTS3 empty
pl receives G(4,3) from p3; pl’'s state now C1 = 4, Q1 empty, CSSTAT1 = p1, GRANTS1 G(1,1), G(2,2), G(4,3)
pl enters its critical section
pl exits its critical section
pl sends R(4, 1) to p1, p3; pl's state now C1 =5, Q1 empty, CSSTAT1 = p1, GRANTS1 empty
pl receives R(4,1) from pl; pl's state now C1 =5, Q1 empty, CSSTAT1 empty, GRANTS1 empty
p3 receives R(4,1) from pl; p3's state now C3 = 5, Q3 empty, CSSTAT3 empty, GRANTS3 empty

Last modified at 7:03 pm on Tuesday, February 27, 2001

Suzuki-Kasami Broadcast Protocol ECS 251 — Winter 2001 Page 6

Suzuki-Kasami Broadcast Protocol

Introduction

This is a token-based protocol. Unlike non-token-based ones, it uses the token’s being possessed by a site to provide
ordering of requests. Clocks and virtual time do not play a role; but order of arrival does.

Notation

* nprocesses

* pj process

* Rj] largest sequence numhgrhas received in a REQUEST message fppm
* L[i] sequence number of request thatas most recently executed

* Qqueue (sequence) of sites requesting token
* T=(Q,L)token

Protocol

1. Torequest entry, ff; does not have the token, it increments its sequence nigfijend then sends
REQUESTY(, s), s = Rj[i], to all other sites.

2. Whenp; receives REQUEST(s) from pj, p; setsR[j] = max®[j], s). If p; has the token ari@[j] = L[j] + 1, it
sends the token {g.

3. If pjis requesting entry and it has or receives the token, it enters the critical section.

4. Whenp; finishes executing the critical section:
a. itsetd[i] = R]i];
b. for everyj not inQ and for whichRj[j] = L[j] + 1, p; appends to Q; and
c. if Qis not emptyp; deletes the first elemehdf Q and sends the token o

Example

There are three processps,p,, andps. p; andps seek mutually exclusive access to a shared resource.
Initially:the token is at p2 and the token’s state is L = [0, 0, 0] and Q empty;
pl's state is C1 =0, R1 =10, 0, 0]; p3’s state is C1 = 0, R2 = [0, 0, 0]; and p3's state is C3 =0, R3=]0, 0, 0]
pl sends R(1, 1) to p2 and p3; pl'sstateisC1=1,R1=[1,0,0]
p3 sends R(3, 1) to p1 and p2; p3's stateisC3=1,R3=[0,0,1]
p2 receives R(1, 1) from pl; p2's state is C2 =1, R2 =[1, 0, 0], holding token
p2 sends the token to p1
pl receives R(3, 1) from p3; pl's stateisC1 =1, R1
p3 receives R(1, 1) from p1; p3's state is C3 =1, R3
pl receives the token from p2
pl enters the critical section
pl exits the critical sectioand sets the token's statetoL=[1,0,0]and Q =(3)
plsends the token to p3; pl's state is C1 =2, R1=[1, 0, 1], holding token, token’s state is L =[1, 0, 0] and Q empty
p3 receives the token from p1l; p3's state is C3 =1, R3=[1, 0, 1], holding token
p3 enters the critical section
p3 exits the critical sectioand sets the token's stateto L =[1, 0, 1] and Q empty

1,0,1]
1,0,1]

Last modified at 7:03 pm on Tuesday, February 27, 2001

Raymond’s Tree-Based Protocol ECS 251 — Winter 2001 Page 7

Raymond’s Tree-Based Protocol

Introduction

This is a token-based protocol. The nodes are arranged in a binary tree, and one acquires the token by going up the
tree. The token is always kept at the root, so the tree needs to rearrange itself as the token floats from site to site.

Notation

s nprocesses
s p; process

* Qrequest queue (sequence) of sites associated with pmpcess
* Hj holder variable associated with procpss
T token

Protocol

1. Torequest entry, ffj does not have the token, it sends a REQUB$T¢ssage to the node namedHjnunless
Q; is not empty (because then it has already sent a REQWHBT has not yet received the token). It adds the
request tay;.

2. Whenp; receives REQUES])(from p;:
a. ifp; does not have the token, it places the REQUB®NRQ; and sends a REQUES) (nessage along (pro-

vided that it is not waiting for a response to an earlier REQUIEST(
b. if p; has the token, it sends the tokempjtand setsi; to j.

3. If pj is requesting entry and receives the token:
a. ifiis notthe first entry iQ);, it deletes the first entjyfrom Q; and forwards the token . It then setsi; to
j. If Q; is not emptyp; sends REQUEST)(to p;.
b. ifiis the first entry irQ;, p; deletes from Q; and enters the critical section.
4. Whenp; finishes executing the critical section:
a. if Q;is not empty, it deletes the first enfiyom Q;, sends the token fm, and setsi; toj
b. if after step &) is not emptyp; sends REQUEST)(to .

Last modified at 7:03 pm on Tuesday, February 27, 2001

Raymond’s Tree-Based Protocol ECS 251 — Winter 2001 Page 8

Example

There are six processgg,throughpg. p; andps seek mutually exclusive access to a shared resource, arg latir

request it.
Initially: p4 has the token;
pl’s state is C1 = 0, HOLDERZ2 = p3, Q1 empty
p2’'s state is C2 = 0, HOLDER2 = p3, Q2 empty
p3’s state is C3 = 0, HOLDER3 = p4, Q3 empty
p4’'s state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token
p5’s state is C5 = 0, HOLDERS = p4, Q5 empty
p6’s state is C6 = 0, HOLDERG6 = p5, Q6 empty
pl sends Q(1) to p3; pl's state is C1 = 1, HOLDER2 = p3, Q1 = Q(1).
p5 sends Q(5) to p4; p5’s state is C5 = 1, HOLDERS = p4, Q5 = Q(5).
p3 receives Q(1) from p1; p3’s state is C3 = 0, HOLDER3 = p4, Q3 empty.
p3 sends Q(3) to p4; p3’s state is C3 = 1, HOLDER3 = p4, Q3 = Q(1).
p4 receives Q(5) from p5; p4’s state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token.
p4 sends token to p5; p4’s state is C4 = 1, HOLDER4 = p5, Q4 empty.
p4 receives Q(3) from p3; p4’s state is C4 = 1, HOLDER4 = p5, Q4 empty.
p4 sends Q(4) to p5; p4's state is C4 = 2, HOLDER4 = p5, Q4 = Q(3).
p5 receives token from p4; p5’s state is C5 = 1, HOLDERS = p4, Q5 = Q(5).
p5 resets state to C5 = 1, HOLDERS = p4, Q5 empty, holding token.
p5 enters the critical section
p5 leaves the critical section
p5 receives Q(4) from p4; p5’'s state is C5 = 1, HOLDERS = p4, Q5 empty, holding token.
p5 sends token to p4; p5'’s state is C5 = 2, HOLDERS = p4, Q5 empty.
p3 sends Q(3) to p4; p3’s state is C3 = 2, HOLDER3 = p4, Q3 = Q(1) Q(3).
p4 receives Q(3) from p3; p4’'s state is C4 = 2, HOLDER4 = p5, Q4 = Q(3).
p4’'s state is C4 = 3, HOLDER4 = p5, Q4 = Q(3)Q(5) [it sends nothing as it is waiting for a response]
p4 receives token from p5; p4’s state is C4 = 3, HOLDER4 = p5, Q4 = Q(3) Q(5), holding token.
p4 sends token to p3; p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(5).
p4 sends Q(4) to p3; p4's state is C4 = 3, HOLDER4 = p3, Q4 = Q(5).
p3 receives token from p4; p3's state is C3 = 2, HOLDER3 = p4, Q3 = Q(1) Q(3), holding token.
p3 sends token to pl; p3’s state is C3 = 3, HOLDER3 = p1, Q3 = Q(3).
p3 sends Q(3) to pl; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3).
pl receives token from p3; pl's state is C1 = 1, HOLDERL1 = p3, Q1 = Q(1), holding token.
pl resets state to C1 = 1, HOLDER1 = p3, Q1 empty, holding token.
pl enters the critical section
pl leaves the critical section
pl receives Q(3) from p3; pl's state is C1 = 1, HOLDER1 = p3, Q1 empty, holding token.
pl sends token to p3; pl’s state is C1 = 2, HOLDERL1 = p3, Q1 empty.
p3 receives token from p1l; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3), holding token.
p3 receives Q(4) from p4; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3) Q(4).
p3 resets state to C3 = 4, HOLDER3 = p1, Q3 = Q(4).
p3 enters the critical section
p3 leaves the critical section
p3 sends token to p4; p3’s state is C3 = 5, HOLDER3 = p4, Q3 empty, holding token.
p4 receives token from p3; p4’s state is p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(5).
p4 sends token to p5; p4’s state is C4 = 4, HOLDER4 = p5, Q4 empty.
p5 receives token from p4; p5’s state is C5 = 2, HOLDERS = p4, Q5 empty.

Last modified at 7:03 pm on Tuesday, February 27, 2001

