

Outline for February 8, 2001 ECS 251 – Winter 2001 Page 1

Last modified at 7:03 pm on Tuesday, February 27, 2001

Outline for February 8, 2001

1. Greetings and felicitations!
2. Maekawa’s’s

a. Request sets satisfy the following conditions:
i. for all 1

≤

 i

,

j

≤

n

 with

i

≠

j

,

R

i

∩

R

j

≠

∅

ii. for all 1

≤

 i

≤

n

,

p

i

∈

R

i

iii. for all 1

≤

 i

≤

n

, |

R

i

 | =

K

iv.

p

j

 is contained in

K

 number of

R

i

.
b. Idea: every pair of processes has has a mediator (in both request sets) to mediate conflicts
c. Only one outstanding REPLY per process, so each process gives permission to enter to only one other pro-

cess
d. Assumes messages delivered in order which they are sent
e. To avoid deadlock, can INQUIRE whether someone cannot get it
f. A FAILED message just means someone else is going in out of order
g. Performance: between 3

√

N

and

5

√

N

 messages
3. Sanders’ generalized protocol

a. Inform set

I

i

 is set of processes to be informed when

p

i

 enters or leaves CS
b. Status set

ST

i

 contains pids for which

p

i

 maintains status information; note:

p

i

∈

I

j

⇒

p

j

∈

ST

i

c. If

p

i

∈

I

i

 for all

i

, then necessary and sufficient conditions to guarantee mutual exclusion are:
i.

I

i

⊆

R

i

ii.

I

i

∩

I

j

≠

∅

 or (

p

i

∈

 Rj and

p

j

∈

R

i

)

4. Suzuki-Kasami’s broadcast protocol
a. token-based
b. uses sequence numbers, not clocks
c. token has sequence numbers, associated queue
d. how to handle stale requests? token’s sequence number too high

5. Raymond’s tree-based protocol
a. token-based
b. think of token as at root of tree, root moves around

Maekawa’s Distributed Mutual Exclusion ProtocolECS 251 – Winter 2001 Page 2

Last modified at 7:03 pm on Tuesday, February 27, 2001

Maekawa’s Distributed Mutual Exclusion Protocol

Introduction

Maekawa’s algorithm uses sets

S

i

 of fewer than

n

 processes. Also, a process

p

i

 locks all the nodes in

S

i

 by having only
one reply message out at a time. Each process has a queue of unsatisfied requests ordered by timestamp.

Notation

•

n

 processes

p

1

, …,

p

n

•

t

j

 timestamp

Protocol

1. To enter the critical section,

p

i

 sends REQUEST(

t

i

,

i

) to all sites in

S

i

.

2. When

p

j

 receives a REQUEST(

t

i

,

i

) message:

a. if it has not sent a REPLYmessage to any site since the last RELEASE message

p

j

 received,

p

j

 sends
REPLY(

t

j

, ,

j

) to

p

i

.
b. Otherwise, there is a process

p

k

 such that

p

j

 has already sent a REPLY(

t

j

, ,

j

) message to

p

k

. Then:
i. if (

t

i

,

i

) < (

t

k

,

k

),

p

j

 sends an INQUIRE(

j

) message to pk and places the REQUEST on its queue.
ii. Otherwise, pj sends a FAILED(j) message to pi.

3. When pk receives an INQUIRE(j) message, it sends a YEILD(k) message if either of the following conditions are
met:
a. pk has received a FAILED message from a site in Sk

b. pk has sent a YIELD(m) message to a site pm ∈ Sk and has not received a REPLY in reply.

Otherwise pk does nothing.
4. When pj receives a YIELD(k) message, pj places REQUEST(tk, k) in the queue and sends a REPLY(tj, j) to the

site whose request is first in the queue.
5. When pj receives a RELEASE(ti, i) message, it sends a REPLY(tj, ,j) message to the next site in the queue and

deletes the entry from the queue. If the queue is empty, pj updates its state to reflect that no REPLY message has
been sent to any site since the last RELEASE message pj received.

6. pi enters the critical section when it has received REPLY messages from all processes in Si.

7. When pi leaves the critical section, it sends RELEASE(ti, i) to all sites in Si.

Maekawa’s Distributed Mutual Exclusion ProtocolECS 251 – Winter 2001 Page 3

Last modified at 7:03 pm on Tuesday, February 27, 2001

Example

There are 13 processes. Initially, all logical clocks are set to 0. The sets are:
S1 = { 1, 2, 3, 4 } S4 = { 4, 6, 10, 11 } S7 = { 2, 7, 10, 13 } S10 = { 3, 5, 10, 12 }
S2 = { 2, 5, 8, 11 } S5 = { 1, 5, 6, 7 } S8 = { 1, 8, 9, 10 } S11 = { 1, 11, 12, 13 }
S3 = { 3, 6, 8, 13 } S6 = { 2, 6, 9, 12 } S9 = { 3, 7, 9, 11 } S12 = { 4, 7, 8, 12 }

S13 = { 4, 5, 9, 13 }
p11 sends REQUEST(0, 11) to p1, p12, p13.
p12 receives REQUEST(0, 11) and sends REPLY(1, 12) to p11.
p13 receives REQUEST(0, 11) and sends REPLY(1, 13) to p11.
p7 sends REQUEST(0, 7) to p2, p10, p13.
p2 receives REQUEST(0, 7) and sends REPLY(1, 2) to p7.
p10 receives REQUEST(0, 7) and sends REPLY(1, 10) to p7.
p8 sends REQUEST(0, 8) to p1, p9, p10.
p1 receives REQUEST(0, 8) and sends REPLY(1, 1) to p8.
p9 receives REQUEST(0, 8) and sends REPLY(1, 9) to p8.
p10 receives REQUEST(0, 8). It already sent a REPLY to p7. p7’s request is timestamped (0, 7) < (0, 8). p10 sends

FAILED(10) to p8.
p1 receives REQUEST(0, 11). It already sent a REPLY to p8. p8’s request is timestamped (0, 8) < (0, 11). p1 sends

FAILED(1) to p11.
p13 receives REQUEST(0, 7). It already sent a REPLY to p11. p11’s request is timestamped (0, 11), and (0, 7) < (0,

11). p13 sends INQUIRE(13) to p11.
p11 receives INQUIRE(13). It has received a FAILED(1) message from p1. p11 sends YIELD(11) to p13.
p13 receives YIELD(11). It now sends REPLY(2, 7) to p7 and places REQUEST(0, 11) in its queue.
p7 has received replies from all processes in S7. It enters the critical section.
p7 leaves the critical section and sends RELEASE(1000, 7) to p2, p10, p13.
p10 receives RELEASE(1000, 7).
p10 sends REPLY(1001, 8).
p8 has received replies from all processes in S8. It enters the critical section.
p8 leaves the critical section and sends RELEASE(1003, 8) to p1, p9, p10.
p1 receives RELEASE(1003, 8).
p1 sends REPLY(1004, 1).
p11 has received replies from all processes in S11. It enters the critical section.
p11 leaves the critical section and sends RELEASE(1005, 11) to p1, p12, p13.

Sanders’ Generalized Protocol ECS 251 – Winter 2001 Page 4

Last modified at 7:03 pm on Tuesday, February 27, 2001

Sanders’ Generalized Protocol

Introduction

This protocol is a generalization of the previous protocols.

Notation

• n processes

• pi process

• Ri request set for pi

• Ii inform set for pi

• STi status set for pi

• CSSTAT site’s knowledge of state of critical section

Protocol

1. To request entry, pi sends REQUEST(ti, i) to all sites in Ri.

2. When a site pi gets a REQUEST(tj, j) message:

a. it places the request onto its queue, which is ordered by timestamps
b. if CSSTAT says the critical section is free, pi sends a GRANT message to the first process pf in the queue and

deletes its entry from the queue. If pf ∈ STi, then CSSTAT is set to indicate that pf is in the critical section.

3. When pi has received GRANT messages from all processes in Ri, pi enters the critical section.

4. When pi leaves the critical section, pi sends a RELEASE message to every site in Ii.

5. When pi receives a RELEASE message:

a. CSSTAT is set to free
b. If pi queue is not empty, pi sends a GRANT to the first process pf in the queue and deletes its entry from the

queue. If pf ∈ STi, then CSSTAT is set to indicate that pf is in the critical section.
c. Repeat step b until either CSSTAT indicates a process has entered the critical section, or pf’s queue is empty.

Sanders’ Generalized Protocol ECS 251 – Winter 2001 Page 5

Last modified at 7:03 pm on Tuesday, February 27, 2001

Example

There are three processes, p1, p2, and p3. p1 and p3 seek mutually exclusive access to a shared resource. Let:
I1 = { p1, p3 }, I2 = { p2 }, I3 = { p3 }, so ST1 = { p1 }, ST2 = { p2 }, ST3 = { p1, p3 }; and
R1 = { p1, p2, p3 }, R2 = { p1, p2, p3 }, R3 = { p2, p3 }
These satisfy the criteria that, for all i, pi ∈ Ii, Ii ⊆ Ri, and for all pairs (i, j), either Ii ∩ Ij ≠ ∅ or (pi ∈ Rj and pj ∈ Ri).
Initially:

p1 state: C1 = 0, Q1 empty, CSSTAT1 empty
p2 state: C2 = 0, Q2 empty, CSSTAT2 empty
p3 state: C3 = 0, Q3 empty, CSSTAT3 empty

p1 sends Q(0,1) to p1, p2 and p3; p1’s state now C1 = 1, Q1 empty, CSSTAT1 empty, GRANTS1 empty
p1 receives Q(0,1) from p1; p1’s state now C1 = 1, Q1 = Q(0,1), CSSTAT1 empty, GRANTS1 empty
p1 sends G(1,1) to p1; p1’s state now C1 = 2, Q1 empty, CSSTAT1 = p1, GRANTS1 empty
p1 receives G(1,1) to p1; p1’s state now C1 = 2, Q1 empty, CSSTAT1 = p1, GRANTS1 G(1,1)
p3 sends Q(0,3) to p2 and p3; p3’s state now C3 = 1, Q3 empty, CSSTAT3 empty, GRANTS3 empty
p3 receives Q(0,3) from p3; p3’s state now C3 = 1, Q3 = Q(0,3), CSSTAT3 empty, GRANTS3 empty
p3 sends G(1,3) to p3; p3’s state now C3 = 2, Q3 empty, CSSTAT3 = p3, GRANTS3 empty
p3 receives G(1,3) from p3; p3’s state now C3 = 2, Q3 empty, CSSTAT3 = p3, GRANTS3 G(1,3)
p2 receives Q(0,1) from p1; p2’s state now C2 = 2, Q2 = Q(0,1), CSSTAT2 empty, GRANTS2 empty
p2 sends G(2,2) to p1; p2’s state now C2 = 3, Q2 empty, CSSTAT2 empty, GRANTS2 empty
p2 receives Q(0,3) from p3; p2’s state now C2 = 3, Q2 = Q(0,3), CSSTAT2 empty, GRANTS2 empty
p2 sends G(3,2) to p3; p2’s state now C2 = 4, Q2 empty, CSSTAT2 empty, GRANTS2 empty
p3 receives Q(0,1) from p1; p3’s state now C3 = 2, Q3 = Q(0,1), CSSTAT3 = p3, GRANTS3 G(1,3)
p1 receives G(2,2) from p2; p1’s state now C1 = 2, Q1 empty, CSSTAT1 = p1, GRANTS1 G(1,1), G(2,2)
p3 receives G(3,2) from p2; p3’s state now C3 = 3, Q3 = Q(0,1), CSSTAT3 = p3, GRANTS3 G(1,3), G(3,2)
p3 enters its critical section
p3 exits its critical section
p3 sends R(3,3) to p3; p3’s state now C3 = 4, Q3 empty, CSSTAT3 = p3, GRANTS3 empty
p3 receives R(3, 3) from p3; p3’s state now C3 = 4, Q3 = Q(0,1), CSSTAT3 empty, GRANTS3 empty
p3 sends G(4, 3) to p1; p3’s state now C3 = 5, Q3 empty, CSSTAT3 = p1, GRANTS3 empty
p1 receives G(4,3) from p3; p1’s state now C1 = 4, Q1 empty, CSSTAT1 = p1, GRANTS1 G(1,1), G(2,2), G(4,3)
p1 enters its critical section
p1 exits its critical section
p1 sends R(4, 1) to p1, p3; p1’s state now C1 = 5, Q1 empty, CSSTAT1 = p1, GRANTS1 empty
p1 receives R(4,1) from p1; p1’s state now C1 = 5, Q1 empty, CSSTAT1 empty, GRANTS1 empty
p3 receives R(4,1) from p1; p3’s state now C3 = 5, Q3 empty, CSSTAT3 empty, GRANTS3 empty

Suzuki-Kasami Broadcast Protocol ECS 251 – Winter 2001 Page 6

Last modified at 7:03 pm on Tuesday, February 27, 2001

Suzuki-Kasami Broadcast Protocol

Introduction

This is a token-based protocol. Unlike non-token-based ones, it uses the token’s being possessed by a site to provide
ordering of requests. Clocks and virtual time do not play a role; but order of arrival does.

Notation

• n processes

• pi process

• Ri[j] largest sequence number pi has received in a REQUEST message from pj

• L[i] sequence number of request that pi has most recently executed

• Q queue (sequence) of sites requesting token

• T = (Q, L) token

Protocol

1. To request entry, if pi does not have the token, it increments its sequence number Ri[i] and then sends
REQUEST(i, s), s = Ri[i], to all other sites.

2. When pi receives REQUEST(i, s) from pj, pi sets Ri[j] = max(Ri[j], s). If pi has the token and Ri[j] = L[j] + 1, it
sends the token to pj.

3. If pi is requesting entry and it has or receives the token, it enters the critical section.

4. When pi finishes executing the critical section:

a. it sets L[i] = Ri[i];
b. for every j not in Q and for which Ri[j] = L[j] + 1, pi appends j to Q; and
c. if Q is not empty, pi deletes the first element f of Q and sends the token to pf.

Example

There are three processes, p1, p2, and p3. p1 and p3 seek mutually exclusive access to a shared resource.
Initially:the token is at p2 and the token’s state is L = [0, 0, 0] and Q empty;

p1’s state is C1 = 0, R1 = [0, 0, 0]; p3’s state is C1 = 0, R2 = [0, 0, 0]; and p3’s state is C3 = 0, R3 = [0, 0, 0]
p1 sends R(1, 1) to p2 and p3; p1’s state is C1 = 1, R1 = [1, 0, 0]
p3 sends R(3, 1) to p1 and p2; p3’s state is C3 = 1, R3 = [0, 0, 1]
p2 receives R(1, 1) from p1; p2’s state is C2 = 1, R2 = [1, 0, 0], holding token
p2 sends the token to p1
p1 receives R(3, 1) from p3; p1’s state is C1 = 1, R1 = [1, 0, 1]
p3 receives R(1, 1) from p1; p3’s state is C3 = 1, R3 = [1, 0, 1]
p1 receives the token from p2
p1 enters the critical section
p1 exits the critical section and sets the token’s state to L = [1, 0, 0] and Q = (3)
p1sends the token to p3; p1’s state is C1 = 2, R1 = [1, 0, 1], holding token, token’s state is L = [1, 0, 0] and Q empty
p3 receives the token from p1; p3’s state is C3 = 1, R3 = [1, 0, 1], holding token
p3 enters the critical section
p3 exits the critical section and sets the token’s state to L = [1, 0, 1] and Q empty

Raymond’s Tree-Based Protocol ECS 251 – Winter 2001 Page 7

Last modified at 7:03 pm on Tuesday, February 27, 2001

Raymond’s Tree-Based Protocol

Introduction

This is a token-based protocol. The nodes are arranged in a binary tree, and one acquires the token by going up the
tree. The token is always kept at the root, so the tree needs to rearrange itself as the token floats from site to site.

Notation

• n processes

• pi process

• Qi request queue (sequence) of sites associated with process pi

• Hi holder variable associated with process pi

• T token

Protocol

1. To request entry, if pi does not have the token, it sends a REQUEST(i) message to the node named in Hi unless
Qi is not empty (because then it has already sent a REQUEST(i) but has not yet received the token). It adds the
request to Qi.

2. When pi receives REQUEST(j) from pj:

a. if pi does not have the token, it places the REQUEST(j) on Qi and sends a REQUEST(i) message along (pro-
vided that it is not waiting for a response to an earlier REQUEST(i).

b. if pi has the token, it sends the token to pj and sets Hi to j.

3. If pi is requesting entry and receives the token:

a. if i is not the first entry in Qi, it deletes the first entry j from Qi and forwards the token to pj. It then sets Hi to
j. If Qi is not empty, pi sends REQUEST(i) to pj.

b. if i is the first entry in Qi, pi deletes i from Qi and enters the critical section.

4. When pi finishes executing the critical section:

a. if Qi is not empty, it deletes the first entry j from Qi, sends the token to pj, and sets Hi to j
b. if after step a Qi is not empty, pi sends REQUEST(i) to pj.

Raymond’s Tree-Based Protocol ECS 251 – Winter 2001 Page 8

Last modified at 7:03 pm on Tuesday, February 27, 2001

Example

There are six processes, p1 through p6. p1 and p5 seek mutually exclusive access to a shared resource, and later p3 will
request it.
Initially: p4 has the token;

p1’s state is C1 = 0, HOLDER2 = p3, Q1 empty
p2’s state is C2 = 0, HOLDER2 = p3, Q2 empty
p3’s state is C3 = 0, HOLDER3 = p4, Q3 empty
p4’s state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token
p5’s state is C5 = 0, HOLDER5 = p4, Q5 empty
p6’s state is C6 = 0, HOLDER6 = p5, Q6 empty

p1 sends Q(1) to p3; p1’s state is C1 = 1, HOLDER2 = p3, Q1 = Q(1).
p5 sends Q(5) to p4; p5’s state is C5 = 1, HOLDER5 = p4, Q5 = Q(5).
p3 receives Q(1) from p1; p3’s state is C3 = 0, HOLDER3 = p4, Q3 empty.
p3 sends Q(3) to p4; p3’s state is C3 = 1, HOLDER3 = p4, Q3 = Q(1).
p4 receives Q(5) from p5; p4’s state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token.
p4 sends token to p5; p4’s state is C4 = 1, HOLDER4 = p5, Q4 empty.
p4 receives Q(3) from p3; p4’s state is C4 = 1, HOLDER4 = p5, Q4 empty.
p4 sends Q(4) to p5; p4’s state is C4 = 2, HOLDER4 = p5, Q4 = Q(3).
p5 receives token from p4; p5’s state is C5 = 1, HOLDER5 = p4, Q5 = Q(5).
p5 resets state to C5 = 1, HOLDER5 = p4, Q5 empty, holding token.
p5 enters the critical section
p5 leaves the critical section
p5 receives Q(4) from p4; p5’s state is C5 = 1, HOLDER5 = p4, Q5 empty, holding token.
p5 sends token to p4; p5’s state is C5 = 2, HOLDER5 = p4, Q5 empty.
p3 sends Q(3) to p4; p3’s state is C3 = 2, HOLDER3 = p4, Q3 = Q(1) Q(3).
p4 receives Q(3) from p3; p4’s state is C4 = 2, HOLDER4 = p5, Q4 = Q(3).
p4’s state is C4 = 3, HOLDER4 = p5, Q4 = Q(3)Q(5) [it sends nothing as it is waiting for a response]
p4 receives token from p5; p4’s state is C4 = 3, HOLDER4 = p5, Q4 = Q(3) Q(5), holding token.
p4 sends token to p3; p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(5).
p4 sends Q(4) to p3; p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(5).
p3 receives token from p4; p3’s state is C3 = 2, HOLDER3 = p4, Q3 = Q(1) Q(3), holding token.
p3 sends token to p1; p3’s state is C3 = 3, HOLDER3 = p1, Q3 = Q(3).
p3 sends Q(3) to p1; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3).
p1 receives token from p3; p1’s state is C1 = 1, HOLDER1 = p3, Q1 = Q(1), holding token.
p1 resets state to C1 = 1, HOLDER1 = p3, Q1 empty, holding token.
p1 enters the critical section
p1 leaves the critical section
p1 receives Q(3) from p3; p1’s state is C1 = 1, HOLDER1 = p3, Q1 empty, holding token.
p1 sends token to p3; p1’s state is C1 = 2, HOLDER1 = p3, Q1 empty.
p3 receives token from p1; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3), holding token.
p3 receives Q(4) from p4; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3) Q(4).
p3 resets state to C3 = 4, HOLDER3 = p1, Q3 = Q(4).
p3 enters the critical section
p3 leaves the critical section
p3 sends token to p4; p3’s state is C3 = 5, HOLDER3 = p4, Q3 empty, holding token.
p4 receives token from p3; p4’s state is p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(5).
p4 sends token to p5; p4’s state is C4 = 4, HOLDER4 = p5, Q4 empty.
p5 receives token from p4; p5’s state is C5 = 2, HOLDER5 = p4, Q5 empty.

