Outline for February 13, 2001 ECS 251 — Winter 2001 Page 1

Outlinefor February 13, 2001

1. Greetings and felicitations!
2. Suzuki-Kasami’s broadcast protocol
a token-based
b. uses sequence numbers, not clocks
c. token has sequence numbers, associated queue
d. how to handle stale requests? token’s sequence number too high
3. Raymond's tree-based protocol
a token-based
b. think of token as at root of tree, root moves around
4. Distributed Agreement Protocols. system model
a. synchronous vs. asynchronous
b. different types of failure (crash, omission, malicious)
c. authentication
5. Classification: agreement (on value), validity (the right value)
a. Byzantine problem (all agree, initial value of source); review Byzantine Generals' problem
b. consensus problem (all agree, if initial value of nodesis same, the final valueis that value)
c. interactive consistency problem (all agree on same vector, if ith processor non-faulty, ith element of vector is
the value of that node)
d. relationship
6. Solution to Byzantine Problem
a. Canshow: if 3m+1 processors, at most m can be faulty or agreement cannot be reached.
b. Demonstration with 3 processors.
c. Lamport-Shostak-Pease algorithm
7. Application: clock synchronization in the face of faults
a. interactive convergence algorithm
b. interactive consistency algorithm

Last modified at 4:00 pm on Thursday, February 15, 2001

Suzuki-Kasami Broadcast Protocol ECS 251 — Winter 2001 Page 2

Suzuki-K asami Broadcast Protocol

I ntroduction

Thisis atoken-based protocol. Unlike non-token-based ones, it uses the token’s being possessed by a site to provide
ordering of requests. Clocks and virtual time do not play arole; but order of arrival does.

Notation

* nprocesses

* pj process

Ri[j] largest sequence number p; has received in a REQUEST message from p
* L[i] sequence number of request that p; has most recently executed

* Q queue (sequence) of sites requesting token
e T=(Q,L)token

Protocol

1. Torequest entry, if p; does not have the token, it increments its sequence number R;[i] and then sends
REQUEST(i,), s= Ry[i], to all other sites.

2. When p; receives REQUEST (i, s) from pj, p; sets R[j] = max(Ri[j], s). If p; hasthe token and R[j] = L[j] + 1, it
sends the token to p;.

3. If pjisrequesting entry and it has or receives the token, it enters the critical section.

4. When p; finishes executing the critical section:
a itsetsL[i] = Rli];
b. for everyj notin Q and for which R[j] = L[j] + 1, p; appendsj to Q; and
c. if Qisnot empty, p; deletesthe first element f of Q and sends the token to p.

Example

There are three processes, py, P,, and ps. p; and ps seek mutually exclusive access to a shared resource.
Initialy:the token is at p2 and the token’s stateis L = [0, O, 0] and Q empty;
pl'sstateisC1l=0,R1=[0, 0, O]; p3'sstateisC1=0,R2=[0, 0, 0]; and p3's stateisC3=0, R3=[0, 0, Q]
pl sends R(1, 1) to p2 and p3; pl'sstateisC1=1,R1=[1,0,0]
p3 sends R(3, 1) to p1 and p2; p3'sstateisC3=1,R3=[0,0,1]
p2 receives R(1, 1) from pl; p2'sstateisC2 =1, R2=[1, 0, 0], holding token
p2 sends the token to p1
pl receives R(3, 1) from p3; pl'sstateisCl=1,R
p3 receives R(1, 1) from pl; p3'sstateisC3=1, R
pl receives the token from p2
pl entersthecritical section
pl exitsthe critical section and setsthe token'sstatetoL =[1,0,0]andQ=(3)
plsendsthetoken to p3; pl'sstateisCl =2, R1=[1, 0, 1], holding token, token'sstateisL =[1, 0, 0] and Q empty
p3 receives the token from pl; p3'sstateisC3=1, R3=[1,0, 1], holding token
p3 entersthecritical section
p3 exitsthe critical section and setsthe token'sstatetoL =[1, 0, 1] and Q empty

WP
I

——

i

Last modified at 4:00 pm on Thursday, February 15, 2001

Raymond’ s Tree-Based Protocol ECS 251 — Winter 2001 Page 3

Raymond’s Tree-Based Protocol

I ntroduction

Thisis atoken-based protocol. The nodes are arranged in a binary tree, and one acquires the token by going up the
tree. The token is always kept at the root, so the tree needs to rearrange itself as the token floats from site to site.

Notation

N processes

p; process

Q; request queue (sequence) of sites associated with process p;
H; holder variable associated with process p;

T token

Protocol

1

To reguest entry, if p; does not have the token, it sends a REQUEST (i) message to the node named in H; unless
Q; is not empty (because then it has already sent a REQUEST (i) but has not yet received the token). It adds the
request to Q.

When p; receives REQUEST((j) from py:

a if p; does not have the token, it places the REQUEST(j) on Q; and sends a REQUEST (i) message along (pro-

vided that it is not waiting for aresponse to an earlier REQUEST (i).
b. if p; has the token, it sends the token to p; and sets H; to j.

If p; isrequesting entry and receives the token:

a ifiisnotthefirstentryinQ;, it deletesthefirst entry j from Q; and forwards the token to p;. It then sets H; to
j. If Q isnot empty, p; sends REQUEST(i) to p;.

b. ifiisthefirstentryin Q;, p; deletesi from Q; and enters the critical section.

When p; finishes executing the critical section:

a if Q isnot empty, it deletesthefirst entry j from Q;, sends the tokento p;, and setsH; to j

b. if after step aQ; is not empty, p; sends REQUEST (i) to ;.

Last modified at 4:00 pm on Thursday, February 15, 2001

Raymond’ s Tree-Based Protocol ECS 251 — Winter 2001 Page 4

Example

There are six processes, p; through pg. p; and ps seek mutually exclusive access to ashared resource, and later ps will
request it.
Initially: p4 has the token;
pl's stateis C1 =0, HOLDERZ = p3, Q1 empty
p2's stateis C2 = 0, HOLDERZ = p3, Q2 empty
p3's stateis C3 = 0, HOLDERS3 = p4, Q3 empty
pd's state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token
p5's state is C5 = 0, HOLDERS = p4, Q5 empty
p6's state is C6 = 0, HOLDER®G = p5, Q6 empty
pl sends Q(1) to p3; pl'sstateisCl =1, HOLDER2 = p3, Q1 = Q(1).
p5 sends Q(5) to p4; p5's stateis C5 = 1, HOLDERS = p4, Q5 = Q(5).
p3 receives Q(1) from pl; p3's state is C3 = 0, HOLDER3 = p4, Q3 empty.
p3 sends Q(3) to p4; p3'sstateisC3 =1, HOLDER3 = p4, Q3 = Q(1).
p4 receives Q(5) from p5; p4's state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token.
p4 sends token to p5; p4's stateis C4 = 1, HOLDER4 = p5, Q4 empty.
p4 receives Q(3) from p3; pd's state is C4 = 1, HOLDER4 = p5, Q4 empty.
p4 sends Q(4) to p5; p4's stateis C4 = 2, HOLDER4 = p5, Q4 = Q(3).
p5 receives token from p4; p5's stateis C5 = 1, HOLDERS = p4, Q5 = Q(5).
p5 resets state to C5 = 1, HOLDERS = p4, Q5 empty, holding token.
p5 entersthecritical section
p5 leaves the critical section
p5 receives Q(4) from p4; p5's state is C5 = 1, HOLDERS = p4, Q5 empty, holding token.
p5 sends token to p4; p5's state is C5 = 2, HOLDERS = p4, Q5 empty.
p3 sends Q(3) to p4; p3'sstateis C3 = 2, HOLDER3 = p4, Q3 = Q(1) Q(3).
p4 receives Q(3) from p3; p4's state is C4 = 2, HOLDER4 = p5, Q4 = Q(3).
pd's stateis C4 = 3, HOLDER4 = p5, Q4 = Q(3)Q(3) [it sends nothing as it is waiting for a response]
p4 receives token from p5; pd's stateis C4 = 3, HOLDER4 = p5, Q4 = Q(3) Q(3), holding token.
p4 sends token to p3; p4's state is C4 = 3, HOLDER4 = p3, Q4 = Q(3).
p4 sends Q(4) to p3; p4d's stateis C4 = 3, HOLDER4 = p3, Q4 = Q(3).
p3 receives token from p4; p3's stateis C3 = 2, HOLDERS = p4, Q3 = Q(1) Q(3), holding token.
p3 sends token to pl; p3'sstateis C3 =3, HOLDER3 = p1, Q3 = Q(3).
p3 sends Q(3) to pl; p3'sstateis C3 = 4, HOLDER3 = p1, Q3 = Q(3).
pl receives token from p3; pl's stateis C1 = 1, HOLDERL1 = p3, Q1 = Q(1), holding token.
pl resets state to C1 = 1, HOLDERL = p3, Q1 empty, holding token.
pl entersthecritical section
pl leaves the critical section
pl receives Q(3) from p4; pl'sstate isC1l = 1, HOLDER1 = p3, Q1 empty, holding token.
pl sends token to p3; pl's stateis C1 = 2, HOLDERL = p3, Q1 empty.
p3 receives token from pl; p3's stateis C3 = 4, HOLDERS = p1, Q3 = Q(3), holding token.
p3 receives Q(4) from p4; p3'sstate is C3 = 4, HOLDER3 = p1, Q3 = Q(3) Q(4).
p3 resets state to C3 = 4, HOLDER3 = p1, Q3 = Q(4).
p3 entersthecritical section
p3 leaves the critical section
p3 sends token to p4; p3's state is C3 = 5, HOLDERS = p4, Q3 empty, holding token.
p4 receives token from p3; pd's stateis p4's state is C4 = 3, HOLDER4 = p3, Q4 = Q(3).
p4 sends token to p3; p4's state is C4 = 4, HOLDER4 = p3, Q4 empty.
p3 receives token from p4; p3's stateis C3 = 5, HOLDERS = p4, Q3 empty.

Last modified at 4:00 pm on Thursday, February 15, 2001

Lamport-Shostak-Pease Algorithm ECS 251 — Winter 2001 Page 5

L amport-Shostak-Pease Algorithm

I ntroduction

Thisisarecursive protocol. It requires 3m+1 processors where at most m are faulty. It consists of two protocols, the
base protocol and the inductive protocol. To run it, determine m from n and invoke OM (m).

Notation

s nprocesses
s pjprocess

Protocol OM (0)

1. The source process sendsits valueto all processes.
2. Each process uses the value it receives from the source. If it receives no value, it uses avalue of 0.

Protocol OM(m), m>0

1. Thesource process sendsits valueto all processes.
2. Letv; bethe value process p; receives from the source. (If it receives no value, then take v; = 0.) Process p; ini-

tiates OM(m-1) with itself as the source and the other n—2 processes as the recipients.
3. Process p; uses the the value majority(vy, ..., V1), Wherev; is the value received in step 2 from the source pro-

cess and the others are the values received from OM (m-1).

Example

There are four processes, p0 through p3. They wish to agree on avalue 0 or 1. Let p0 be theinitiator, and it has value
1. Assume all processes are non-faulty.
p0 invokes OM(1)
p0 sends 1 to p1, p2, and p3.
pl receives 1 from p0 and invokes OM (0).
pl sends 1 to p2 and p3.
p2 receives value 1.
p3 receives value 1.
p2 receives 1 from p0 and invokes OM (0).
p2 sends 1 to pl and p3.
pl receives value 1.
p3 receives value 1.
p3 receives 1 from p0 and invokes OM (0).
p3 sends 1 to pl and p2.
pl receives value 1.
p2 receives value 1.
pl computes majority (1, 1, 1) and takes the value at the sourceto be 1.
p2 computes majority (1, 1, 1) and takes the value at the sourceto be 1.
p3 computes majority (1, 1, 1) and takes the value at the sourceto be 1.

Last modified at 4:00 pm on Thursday, February 15, 2001

Lamport-Shostak-Pease Algorithm ECS 251 — Winter 2001 Page 6

Now assume p2 is faulty and will send a bogus value.
p0 invokes OM (1)
pO0 sends 1 to p1, p2, and p3.
p1 receives 1 from p0 and invokes OM(0).
pl sends 1 to p2 and p3.
p2 receives value 1.
p3 receives value 1.
p2 receives 1 from p0 and invokes OM(0).
p2 sends 0 to p1 and p3.
p1 receives value 0.
p3 receives value 0.
p3 receives 1 from p0 and invokes OM(0).
p3 sends 1 to p1 and p2.
pl receivesvalue 1.
p2 receives value 1.
p1 computes majority (1, 0, 1) and takes the value at the source to be 1.
p2 computes majority (1, 1, 1) and takes the value at the source to be 1.
p3 computes majority (1, 0, 1) and takes the value at the source to be 1.

Now assume p0 is faulty and will send arandom value.
pO invokes OM (1)
p0 sends 1 to p1 and O to p2 and p3.
p1 receives 1 from p0 and invokes OM(0).
pl sends 1 to p2 and p3.
p2 receives value 1.
p3 receives value 1.
p2 receives 0 from p0 and invokes OM(0).
p2 sends 0 to p1 and p3.
p1 receives value 0.
p3 receives value 0.
p3 receives 0 from p0 and invokes OM(0).
p3 sends 0 to p1 and p2.
p1 receives value 0.
p2 receives value 0.
p1 computes majority (1, 0, 0) and takes the value at the source to be 0.
p2 computes majority (1, 0, 0) and takes the value at the source to be 0.
p3 computes majority (1, 0, 0) and takes the value at the source to be 0.
In this case agreement is reached, but as the source is faulty the result is not valid.

Last modified at 4:00 pm on Thursday, February 15, 2001

Fault-Tolerant Clock Synchronization ECS 251 — Winter 2001 Page 7

Fault-Tolerant Clock Synchronization

I ntroduction

The goal isto synchronize the time of clocks on different systems. The protocol includes both faulty and non-faulty
clocks. The assumptions are that initially all clocks are synchronized to within some small value 9, that non-faulty
clocksrun at the correct rate (that is, onetick per second), and a nonfaulty process can read a non-faulty clock with an
error of at most €. In what follows, we shall assume € = 0.

Notation

s nprocesses
s pjprocess

I nter active Conver gence Protocol

This assumes that no two non-faulty clocks differ by more than &. All processes execute this protocol simultaneously.

1. p; obtainsthe value of the other processes’ clocks (for example, by using the OM(m) protocol). Call these values
Vi, ooes Vi

2. Fordlj<n,if |vj—vi|>d, setv;' = v;. Otherwise, v’ = V.

3. Setp’sclock to (3 v;')/n.

Example

Suppose pg, P1, P2, and pz wish to synchronize their clocks. Take 8 = 10, Cy = 2, C; = 5,C, = 8, and C3 = 10. Then:
after this protocol is used, all theclocksaresetto (2 +5+ 8+ 10)/4=25/4=6.

Now suppose p3's clock is faulty and driftsto C5 = 25. Then:

e Cp=(2+5+8+2)/4=17/4=4

e C;=(2+5+8+5)/4=20/4=5

e C,=(2+5+8+8)/4=23/4=6

After the next round, assuming ps reports any value & away from Cp, C4, and Cs:

e Cy=(4+5+6+4)/4=19/4=5

e C1=(4+5+6+5)/4=20/4=5

e C,=(4+5+6+6)/4=214=5

Now assume C; isatwo-faced clock. The danger isthat p3 will report avalue within & of C; to p,, and not within & of
Cop and C,. So, begin with the same values as above, except that ps reports C3 = 1 to p; and C5 = 25 to pg and p,:

e Cy=(2+5+8+2)/4=17/4=4

« C,=(2+5+8+1)/4=16/4=4

e C,=(2+5+8+8)/4=23/4=6

At the next round, ps reports C5 = 15 to p, and C3 = 0 to pg and p;.

e Cy=(4+4+6+0)/4=14/14=4

e Ci=(4+4+6+0)/4=14/4=4

e Cy=(4+4+6+15)/4=29/4=7

By continuing in this fashion, ps can prevent the value of the clocks of the non-faulty processors from converging.

Last modified at 4:00 pm on Thursday, February 15, 2001

Fault-Tolerant Clock Synchronization ECS 251 — Winter 2001 Page 8

I nter active Consistency Protocol

This assumes that no two non-faulty clocks differ by more than &. All processes execute this protocol simultaneously.

1. p, obtainsthe value of the other processes’ clocks (for example, by using the OM(m) protocol). Call these values
Vi, ey V.

2. Setp;'sclock tothe median of vy, ..., Vj,.

Example

Suppose pg, P1, P2, and pz wish to synchronize their clocks. Take d = 10, Cy = 2, C; = 5,C, = 8, and C3 = 10. Then:
after this protocol is used, all the clocks are set to median(2,5, 8, 10) = (5 + 8)/2 = 6.
Now suppose p3's clock is faulty and driftsto C5 = 25. Then:
« Cpy=median(2,5,8,25)=(5+8)/2=6
* Ci=median(2,5,8,25)=(5+8)/2=6
« GCo=median(2,5,8,25)=(5+8)/2=6
Now assume C; is atwo-faced clock. Begin with the same values as above, except that ps reports C3 = 1 to p; and
C3 =25t0 pg and p,. All apply an agreement protocol:
p3 invokes OM(1)
p3 sends 1 to pl and 25 to py and p,.
Po receives 25 from p3 and invokes OM(0).
Po sends 25 to p; and p,.
p, receives value 25.
p, receives value 25.
p; receives 1 from p3 and invokes OM(0).
p; sends 1 to pg and po.
Ppo receives value 1.
p, receives value 1.
p2 receives 25 from p3 and invokes OM(0).
p, sends 25 to pg and p;.
Po receives value 25.
p, receives value 25.
Po computes majority (25, 1, 25) and takes the value at the source to be 25.
p; computes majority (25, 1, 25) and takes the value at the source to be 25.
p, computes majority (25, 1, 25) and takes the value at the source to be 25.
+ Cy=median(2,5,8,25)=(5+8)/2=6
+ Ci=median(2,5,8,25)=(5+8)/2=6
« Co=median(2,5,8,25)=(5+8)/2=6
Notice that all arrive at the same value.

Last modified at 4:00 pm on Thursday, February 15, 2001

