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Outline for February 13, 2001

 

1. Greetings and felicitations!
2. Suzuki-Kasami’s broadcast protocol

a. token-based
b. uses sequence numbers, not clocks
c. token has sequence numbers, associated queue
d. how to handle stale requests? token’s sequence number too high

3. Raymond’s tree-based protocol
a. token-based
b. think of token as at root of tree, root moves around

4. Distributed Agreement Protocols: system model
a. synchronous vs. asynchronous
b. different types of failure (crash, omission, malicious)
c. authentication

5. Classification: agreement (on value), validity (the right value)
a. Byzantine problem (all agree, initial value of source); review Byzantine Generals’ problem
b. consensus problem (all agree, if initial value of nodes is same, the final value is that value)
c. interactive consistency problem (all agree on same vector, if 

 

i

 

th processor non-faulty, 

 

i

 

th element of vector is 
the value of that node)

d. relationship
6. Solution to Byzantine Problem

a. Can show: if 3

 

m

 

+1 processors, at most 

 

m

 

 can be faulty or agreement cannot be reached.
b. Demonstration with 3 processors.
c. Lamport-Shostak-Pease algorithm

7. Application: clock synchronization in the face of faults
a. interactive convergence algorithm
b. interactive consistency algorithm
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Suzuki-Kasami Broadcast Protocol

 

Introduction

 

This is a token-based protocol. Unlike non-token-based ones, it uses the token’s being possessed by a site to provide 
ordering of requests. Clocks and virtual time do not play a role; but order of arrival does.

 

Notation

 

•

 

n

 

 processes

•

 

p

 

i

 

 process

•

 

R

 

i

 

[

 

j

 

] largest sequence number 

 

p

 

i

 

 has received in a REQUEST message from 

 

p

 

j

 

•

 

L

 

[

 

i

 

] sequence number of request that 

 

p

 

i

 

 has most recently executed

•

 

Q

 

 queue (sequence) of sites requesting token

•

 

T

 

 = (Q, L) token

 

Protocol

 

1. To request entry, if 

 

p

 

i

 

 does not have the token, it increments its sequence number 

 

R

 

i

 

[

 

i

 

] and then sends 
REQUEST(

 

i

 

, 

 

s

 

), 

 

s

 

 = 

 

R

 

i

 

[

 

i

 

], to all other sites.

2. When 

 

p

 

i

 

 receives REQUEST(

 

i

 

, 

 

s

 

) from 

 

p

 

j

 

, 

 

p

 

i

 

 sets 

 

R

 

i

 

[

 

j

 

] = max(

 

R

 

i

 

[

 

j

 

], 

 

s

 

). If 

 

p

 

i

 

 has the token and 

 

R

 

i

 

[

 

j

 

] = 

 

L

 

[

 

j

 

] + 1, it 
sends the token to 

 

p

 

j

 

.

3. If 

 

p

 

i

 

 is requesting entry and it has or receives the token, it enters the critical section.

4. When 

 

p

 

i

 

 finishes executing the critical section:

a. it sets 

 

L

 

[

 

i

 

] = 

 

R

 

i

 

[

 

i

 

];
b. for every 

 

j

 

 not in 

 

Q

 

 and for which 

 

R

 

i

 

[

 

j

 

] = 

 

L

 

[

 

j

 

] + 1, 

 

p

 

i

 

 appends 

 

j

 

 to 

 

Q

 

; and
c. if 

 

Q

 

 is not empty, 

 

p

 

i

 

 deletes the first element 

 

f

 

 of 

 

Q

 

 and sends the token to 

 

p

 

f

 

.

 

Example

 

There are three processes, 

 

p

 

1

 

, 

 

p

 

2

 

, and 

 

p

 

3

 

. 

 

p

 

1

 

 and 

 

p

 

3

 

 seek mutually exclusive access to a shared resource.
Initially:the token is at p2 and the token’s state is L = [0, 0, 0] and Q empty;

p1’s state is C1 = 0, R1 = [0, 0, 0]; p3’s state is C1 = 0, R2 = [0, 0, 0]; and p3’s state is C3 = 0, R3 = [0, 0, 0]
p1 sends R(1, 1) to p2 and p3; p1’s state is C1 = 1, R1 = [ 1, 0, 0 ]
p3 sends R(3, 1) to p1 and p2; p3’s state is C3 = 1, R3 = [ 0, 0, 1 ]
p2 receives R(1, 1) from p1; p2’s state is C2 = 1, R2 = [ 1, 0, 0 ], holding token
p2 sends the token to p1
p1 receives R(3, 1) from p3; p1’s state is C1 = 1, R1 = [ 1, 0, 1 ]
p3 receives R(1, 1) from p1; p3’s state is C3 = 1, R3 = [ 1, 0, 1 ]
p1 receives the token from p2

 

p1 enters the critical section
p1 exits the critical section

 

 and sets the token’s state to L = [ 1, 0, 0 ] and Q = ( 3 )
p1sends the token to p3; p1’s state is C1 = 2, R1 = [ 1, 0, 1 ], holding token, token’s state is L = [ 1, 0, 0 ] and Q empty
p3 receives the token from p1; p3’s state is C3 = 1, R3 = [ 1, 0, 1 ], holding token

 

p3 enters the critical section
p3 exits the critical section

 

 and sets the token’s state to L = [ 1, 0, 1 ] and Q empty
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Raymond’s Tree-Based Protocol

 

Introduction

 

This is a token-based protocol. The nodes are arranged in a binary tree, and one acquires the token by going up the 
tree. The token is always kept at the root, so the tree needs to rearrange itself as the token floats from site to site.

 

Notation

 

•

 

n

 

 processes

•

 

p

 

i

 

 process

•

 

Q

 

i

 

 request queue (sequence) of sites associated with process 

 

p

 

i

 

•

 

H

 

i

 

 holder variable associated with process 

 

p

 

i

 

•

 

T

 

  token

 

Protocol

 

1. To request entry, if 

 

p

 

i

 

 does not have the token, it sends a REQUEST(

 

i

 

) message to the node named in 

 

H

 

i

 

  unless 

 

Q

 

i

 

 is not empty (because then it has already sent a REQUEST(

 

i

 

) but has not yet received the token). It adds the 
request to 

 

Q

 

i

 

.

2. When 

 

p

 

i

 

 receives REQUEST(

 

j

 

) from 

 

p

 

j

 

:

a. if 

 

p

 

i

 

 does not have the token, it places the REQUEST(

 

j

 

) on 

 

Q

 

i

 

 and sends a REQUEST(

 

i

 

) message along (pro-
vided that it is not waiting for a response to an earlier REQUEST(

 

i

 

).
b. if 

 

p

 

i

 

 has the token, it sends the token to pj and sets Hi to j.

3. If pi is requesting entry and  receives the token:

a. if i is not the first entry in Qi, it deletes the first entry j from Qi and forwards the token to pj. It then sets Hi to 
j. If Qi is not empty, pi sends REQUEST(i) to pj.

b. if i is the first entry in Qi, pi deletes i from Qi and enters the critical section.

4. When pi finishes executing the critical section:

a. if Qi is not empty, it deletes the first entry j from Qi, sends the token to pj, and sets Hi to j
b. if after step a Qi is not empty, pi sends REQUEST(i) to pj.
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Example

There are six processes, p1 through p6. p1 and p5 seek mutually exclusive access to a shared resource, and later p3 will 
request it.
Initially: p4 has the token;

p1’s state is C1 = 0, HOLDER2 = p3, Q1 empty
p2’s state is C2 = 0, HOLDER2 = p3, Q2 empty
p3’s state is C3 = 0, HOLDER3 = p4, Q3 empty
p4’s state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token
p5’s state is C5 = 0, HOLDER5 = p4, Q5 empty
p6’s state is C6 = 0, HOLDER6 = p5, Q6 empty

p1 sends Q(1) to p3; p1’s state is C1 = 1, HOLDER2 = p3, Q1 = Q(1).
p5 sends Q(5) to p4; p5’s state is C5 = 1, HOLDER5 = p4, Q5 = Q(5).
p3 receives Q(1) from p1; p3’s state is C3 = 0, HOLDER3 = p4, Q3 empty.
p3 sends Q(3) to p4; p3’s state is C3 = 1, HOLDER3 = p4, Q3 = Q(1).
p4 receives Q(5) from p5; p4’s state is C4 = 0, HOLDER4 = p4, Q4 empty, holding token.
p4 sends token to p5; p4’s state is C4 = 1, HOLDER4 = p5, Q4 empty.
p4 receives Q(3) from p3; p4’s state is C4 = 1, HOLDER4 = p5, Q4 empty.
p4 sends Q(4) to p5; p4’s state is C4 = 2, HOLDER4 = p5, Q4 = Q(3).
p5 receives token from p4; p5’s state is C5 = 1, HOLDER5 = p4, Q5 = Q(5).
p5 resets state to C5 = 1, HOLDER5 = p4, Q5 empty, holding token.
p5 enters the critical section
p5 leaves the critical section
p5 receives Q(4) from p4; p5’s state is C5 = 1, HOLDER5 = p4, Q5 empty, holding token.
p5 sends token to p4; p5’s state is C5 = 2, HOLDER5 = p4, Q5 empty.
p3 sends Q(3) to p4; p3’s state is C3 = 2, HOLDER3 = p4, Q3 = Q(1) Q(3).
p4 receives Q(3) from p3; p4’s state is C4 = 2, HOLDER4 = p5, Q4 = Q(3).
p4’s state is C4 = 3, HOLDER4 = p5, Q4 = Q(3)Q(3) [it sends nothing as it is waiting for a response]
p4 receives token from p5; p4’s state is C4 = 3, HOLDER4 = p5, Q4 = Q(3) Q(3), holding token.
p4 sends token to p3; p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(3).
p4 sends Q(4) to p3; p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(3).
p3 receives token from p4; p3’s state is C3 = 2, HOLDER3 = p4, Q3 = Q(1) Q(3), holding token.
p3 sends token to p1; p3’s state is C3 = 3, HOLDER3 = p1, Q3 = Q(3).
p3 sends Q(3) to p1; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3).
p1 receives token from p3; p1’s state is C1 = 1, HOLDER1 = p3, Q1 = Q(1), holding token.
p1 resets state to C1 = 1, HOLDER1 = p3, Q1 empty, holding token.
p1 enters the critical section
p1 leaves the critical section
p1 receives Q(3) from p4; p1’s state is C1 = 1, HOLDER1 = p3, Q1 empty, holding token.
p1 sends token to p3; p1’s state is C1 = 2, HOLDER1 = p3, Q1 empty.
p3 receives token from p1; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3), holding token.
p3 receives Q(4) from p4; p3’s state is C3 = 4, HOLDER3 = p1, Q3 = Q(3) Q(4).
p3 resets state to C3 = 4, HOLDER3 = p1, Q3 = Q(4).
p3 enters the critical section
p3 leaves the critical section
p3 sends token to p4; p3’s state is C3 = 5, HOLDER3 = p4, Q3 empty, holding token.
p4 receives token from p3; p4’s state is p4’s state is C4 = 3, HOLDER4 = p3, Q4 = Q(3).
p4 sends token to p3; p4’s state is C4 = 4, HOLDER4 = p3, Q4 empty.
p3 receives token from p4; p3’s state is C3 = 5, HOLDER5 = p4, Q3 empty.



Lamport-Shostak-Pease Algorithm ECS 251 – Winter 2001 Page 5

Last modified at 4:00 pm on Thursday, February 15, 2001

Lamport-Shostak-Pease Algorithm

Introduction

This is a recursive protocol. It requires 3m+1 processors where at most m are faulty. It consists of two protocols, the 
base protocol and the inductive protocol. To run it, determine m from n and invoke OM(m).

Notation

• n processes

• pi process

Protocol OM(0)

1. The source process sends its value to all processes.
2. Each process uses the value it receives from the source. If it receives no value, it uses a value of 0.

Protocol OM(m), m > 0

1. The source process sends its value to all processes.
2. Let vi be the value process pi receives from the source. (If it receives no value, then take vi = 0.) Process pi ini-

tiates OM(m–1) with itself as the source and the other n–2 processes as the recipients.
3. Process pi uses the the value majority(v1, …, vn–1), where vi is the value received in step 2 from the source pro-

cess and the others are the values received from OM(m–1).

Example

There are four processes, p0 through p3. They wish to agree on a value 0 or 1. Let p0 be the initiator, and it has value 
1. Assume all processes are non-faulty. 
p0 invokes OM(1)

p0 sends 1 to p1, p2, and p3.
p1 receives 1 from p0 and invokes OM(0).

p1 sends 1 to p2 and p3.
p2 receives value 1.
p3 receives value 1.

p2 receives 1 from p0 and invokes OM(0).
p2 sends 1 to p1 and p3.
p1 receives value 1.
p3 receives value 1.

p3 receives 1 from p0 and invokes OM(0).
p3 sends 1 to p1 and p2.
p1 receives value 1.
p2 receives value 1.

p1 computes majority (1, 1, 1) and takes the value at the source to be 1.
p2 computes majority (1, 1, 1) and takes the value at the source to be 1.
p3 computes majority (1, 1, 1) and takes the value at the source to be 1.
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Now assume p2 is faulty and will send a bogus value.
p0 invokes OM(1)

p0 sends 1 to p1, p2, and p3.
p1 receives 1 from p0 and invokes OM(0).

p1 sends 1 to p2 and p3.
p2 receives value 1.
p3 receives value 1.

p2 receives 1 from p0 and invokes OM(0).
p2 sends 0 to p1 and p3.
p1 receives value 0.
p3 receives value 0.

p3 receives 1 from p0 and invokes OM(0).
p3 sends 1 to p1 and p2.
p1 receives value 1.
p2 receives value 1.

p1 computes majority (1, 0, 1) and takes the value at the source to be 1.
p2 computes majority (1, 1, 1) and takes the value at the source to be 1.
p3 computes majority (1, 0, 1) and takes the value at the source to be 1.

Now assume p0 is faulty and will send a random value.
p0 invokes OM(1)

p0 sends 1 to p1 and 0 to p2 and p3.
p1 receives 1 from p0 and invokes OM(0).

p1 sends 1 to p2 and p3.
p2 receives value 1.
p3 receives value 1.

p2 receives 0 from p0 and invokes OM(0).
p2 sends 0 to p1 and p3.
p1 receives value 0.
p3 receives value 0.

p3 receives 0 from p0 and invokes OM(0).
p3 sends 0 to p1 and p2.
p1 receives value 0.
p2 receives value 0.

p1 computes majority (1, 0, 0) and takes the value at the source to be 0.
p2 computes majority (1, 0, 0) and takes the value at the source to be 0.
p3 computes majority (1, 0, 0) and takes the value at the source to be 0.

In this case agreement is reached, but as the source is faulty the result is not valid.
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Fault-Tolerant Clock Synchronization

Introduction

The goal is to synchronize the time of clocks on different systems. The protocol includes both faulty and non-faulty 
clocks. The assumptions are that initially all clocks are synchronized to within some small value δ, that non-faulty 
clocks run at the correct rate (that is, one tick per second), and a nonfaulty process can read a non-faulty clock with an 
error of at most ε. In what follows, we shall assume ε = 0.

Notation

• n processes

• pi process

Interactive Convergence Protocol

This assumes that no two non-faulty clocks differ by more than δ. All processes execute this protocol simultaneously.

1. pi obtains the value of the other processes’ clocks (for example, by using the OM(m) protocol). Call these values  
v1, …, vn.

2. For all j < n, if |vj – vi| > d, set vj’ = vi. Otherwise, vj’ = vj.
3. Set pi’s clock to (∑j vj’)/n.

Example

Suppose p0, p1, p2, and p3 wish to synchronize their clocks. Take δ = 10, C0 = 2, C1 = 5,C2 = 8, and C3 = 10. Then:
after this protocol is used, all the clocks are set to (2 + 5 + 8 + 10)/4 = 25/4 = 6.
Now suppose p3’s clock is faulty and drifts to C3 = 25. Then:
• C0 = (2 + 5 + 8 + 2)/4 = 17/4 = 4
• C1 = (2 + 5 + 8 + 5)/4 = 20/4 = 5
• C2 = (2 + 5 + 8 + 8)/4 = 23/4 = 6
After the next round, assuming p3 reports any value δ away from C0, C1, and C2:
• C0 = (4 + 5 + 6 + 4)/4 = 19/4 = 5
• C1 = (4 + 5 + 6 + 5)/4 = 20/4 = 5
• C2 = (4 + 5 + 6 + 6)/4 = 21/4 = 5
Now assume C3 is a two-faced clock. The danger is that p3 will report a value within δ of C1 to p1, and not within δ of 
C0 and C2. So, begin with the same values as above, except that p3 reports C3 = 1 to p1 and C3 = 25 to p0 and p2:
• C0 = (2 + 5 + 8 + 2)/4 = 17/4 = 4
• C1 = (2 + 5 + 8 + 1)/4 = 16/4 = 4
• C2 = (2 + 5 + 8 + 8)/4 = 23/4 = 6
At the next round, p3 reports C3 = 15 to p2 and C3 = 0 to p0 and p1.
• C0 = (4 + 4 + 6 + 0)/4 = 14/4 = 4
• C1 = (4 + 4 + 6 + 0)/4 = 14/4 = 4
• C2 = (4 + 4 + 6 + 15)/4 = 29/4 = 7
By continuing in this fashion, p3 can prevent the value of the clocks of the non-faulty processors from converging.
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Interactive Consistency Protocol

This assumes that no two non-faulty clocks differ by more than δ. All processes execute this protocol simultaneously.

1. pi obtains the value of the other processes’ clocks (for example, by using the OM(m) protocol). Call these values  
v1, …, vn.

2. Set pi’s clock to the median of v1, …, vn.

Example

Suppose p0, p1, p2, and p3 wish to synchronize their clocks. Take δ = 10, C0 = 2, C1 = 5,C2 = 8, and C3 = 10. Then:
after this protocol is used, all the clocks are set to median(2,5, 8, 10) = (5 + 8)/2 = 6.
Now suppose p3’s clock is faulty and drifts to C3 = 25. Then:
• C0 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C1 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C2 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
Now assume C3 is a two-faced clock. Begin with the same values as above, except that p3 reports C3 = 1 to p1 and    
C3 = 25 to p0 and p2. All apply an agreement protocol:
p3 invokes OM(1)

p3 sends 1 to p1 and 25 to p0 and p2.
p0 receives 25 from p3 and invokes OM(0).

p0 sends 25 to p1 and p2.
p1 receives value 25.
p2 receives value 25.

p1 receives 1 from p3 and invokes OM(0).
p1 sends 1 to p0 and p2.
p0 receives value 1.
p2 receives value 1.

p2 receives 25 from p3 and invokes OM(0).
p2 sends 25 to p0 and p1.
p0 receives value 25.
p1 receives value 25.

p0 computes majority (25, 1, 25) and takes the value at the source to be 25.
p1 computes majority (25, 1, 25) and takes the value at the source to be 25.
p2 computes majority (25, 1, 25) and takes the value at the source to be 25.

• C0 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C1 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C2 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
Notice that all arrive at the same value.


