
 
Outline for February 15, 2001 ECS 251 – Winter 2001 Page 1

Last modified at 3:14 pm on Thursday, February 15, 2001

 

Outline for February 15, 2001

 

1. Greetings and felicitations!
a. Tuesday, Feb 20 3-4:30: Friday Feb 23 1:10-2:30; go to 1101 Hart Hall to view

2. Application: clock synchronization in the face of faults
a. interactive convergence algorithm
b. interactive consistency algorithm

3. Example of time protocol: NTP
4. Distributed File Systems

a. Goals: network transparency, high availability
b. Architecture: flat (all servers); have specific file servers and clients
c. Critical services: name server (resolves file names), cache manager (speeds accessses up)

5. Building Blocks
a. Mounting: binds differing name spaces to a single global view of the name space

6. Mounting
a. Put the name space at a point in the file tree, as a directory (mount point)
b. Mount table maps mount points to remote file servers
c. Maintain mount info at client: each client mounts file systems individually; updates in client (NFS)
d. Maintain mount info at server: every client sees identical name space; updates at server only (Sprite)

7. Caching
a. Reduces delays in file accesses
b. Copy data to local client ; exploits temporal locality

8. Hints
a. Like caching, but regard data as not reliable
b. Example: store name resolution data, and work from closest back; invalidate cache entries on failure

9. Encryption
a. Use Needham-Schroeder (describe generic protocol)

10. Naming
a. Name resolution: map name to address or object (or multiple oblects)
b. Name space: collection of names; need not share name resolution
c. Approach 1: names identify host: /net/olympus/home/bishop; unique, location dependent (NFS)
d. Approach 2: mount remote directories locally: need to know host system for mount, but then it’s location 

transparent (NFS)
e. Approach 3: single global directory resolving all name references (Sprite, Apollo); unique, location transpar-

ent, but typically limited to single organizational units
f. Contexts

i. Partition of name space; context identifies the name resoultion mechanism to use
ii. Example: Tilde partitions name space into directory trees based upon project; context is the set of tilde 

trees that a process has in its environment
g. Name servers

11. Writing Policy
a. Write-through: client writes to file, server immediately updates file written
b. Delayed write at server: client writes to file, server may hold before updating file; idea is that data may not 

need to be written at all because client may delete it; problem is crashes loose that data 
c. Delayed write at client: writes sit at client until file is closed, then are flushed to server. Idea is that files are 

open for a very short time, so this cuts burden on servers
12. Cache consistency

a. server-initiated: servers inform cache managers when data no longer valid
b. client-initiated: client cache managers check validity of data before returning it to callers
c. disallow caching when concurrent-write sharing: file open at multiple clients, and at least one for writing 

(either server tracks who has file open and how, or lock it)
d. problem: sequential-write sharing: recently updated file (by one client) is opened for writing by a second cli-

ent. Second may have outdated blocks in cache (cache timestamps, and compare with real timestamps); first 



 
Outline for February 15, 2001 ECS 251 – Winter 2001 Page 2

Last modified at 3:14 pm on Thursday, February 15, 2001

client may not have flushed cached changes yet (server requires clients to flush cache when another client 
opens file)



 
Fault-Tolerant Clock Synchronization ECS 251 – Winter 2001 Page 3

Last modified at 3:14 pm on Thursday, February 15, 2001

 

Fault-Tolerant Clock Synchronization

 

Introduction

 

The goal is to synchronize the time of clocks on different systems. The protocol includes both faulty and non-faulty 
clocks. The assumptions are that initially all clocks are synchronized to within some small value 

 

δ

 

, that non-faulty 
clocks run at the correct rate (that is, one tick per second), and a nonfaulty process can read a non-faulty clock with an 
error of at most 

 

ε

 

. In what follows, we shall assume 

 

ε

 

 = 0.

 

Notation

 

•

 

n

 

 processes

•

 

p

 

i

 

 process

 

Interactive Convergence Protocol

 

This assumes that no two non-faulty clocks differ by more than 

 

δ

 

. All processes execute this protocol simultaneously.

1.

 

p

 

i

 

 obtains the value of the other processes’ clocks (for example, by using the OM(

 

m

 

) protocol). Call these values  

 

v

 

1

 

, …, 

 

v

 

n

 

.
2. For all 

 

j

 

 < 

 

n

 

, if |

 

v

 

j

 

 – 

 

v

 

i

 

| > d, set 

 

v

 

j

 

’ = 

 

v

 

i

 

. Otherwise, 

 

v

 

j

 

’ = 

 

v

 

j

 

.
3. Set 

 

p

 

i

 

’s clock to (

 

∑

 

j

 

 

 

v

 

j

 

’)/

 

n

 

.

 

Example

 

Suppose 

 

p

 

0

 

, 

 

p

 

1

 

, 

 

p

 

2

 

, and 

 

p

 

3

 

 wish to synchronize their clocks. Take 

 

δ

 

 = 10, 

 

C

 

0

 

 = 2, 

 

C

 

1

 

 = 5,

 

C

 

2

 

 = 8, and 

 

C

 

3

 

 = 10. Then:
after this protocol is used, all the clocks are set to (2 + 5 + 8 + 10)/4 = 25/4 = 6.
Now suppose 

 

p

 

3

 

’s clock is faulty and drifts to 

 

C

 

3

 

 = 25. Then:
•

 

C

 

0

 

 = (2 + 5 + 8 + 2)/4 = 17/4 = 4
•

 

C

 

1

 

 = (2 + 5 + 8 + 5)/4 = 20/4 = 5
•

 

C

 

2

 

 = (2 + 5 + 8 + 8)/4 = 23/4 = 6
After the next round, assuming 

 

p

 

3

 

 reports any value 

 

δ

 

 away from 

 

C

 

0

 

, 

 

C

 

1

 

, and 

 

C

 

2

 

:
•

 

C

 

0

 

 = (4 + 5 + 6 + 4)/4 = 19/4 = 5
•

 

C

 

1

 

 = (4 + 5 + 6 + 5)/4 = 20/4 = 5
•

 

C

 

2

 

 = (4 + 5 + 6 + 6)/4 = 21/4 = 5
Now assume 

 

C

 

3

 

 is a two-faced clock. The danger is that 

 

p

 

3

 

 will report a value within 

 

δ

 

 of 

 

C

 

1

 

 to 

 

p

 

1

 

, and not within 

 

δ

 

 of 

 

C

 

0

 

 and 

 

C

 

2

 

. So, begin with the same values as above, except that 

 

p

 

3

 

 reports 

 

C

 

3

 

 = 1 to 

 

p

 

1

 

 and 

 

C

 

3

 

 = 25 to 

 

p

 

0

 

 and 

 

p

 

2

 

:
•

 

C

 

0

 

 = (2 + 5 + 8 + 2)/4 = 17/4 = 4
•

 

C

 

1

 

 = (2 + 5 + 8 + 1)/4 = 16/4 = 4
•

 

C

 

2

 

 = (2 + 5 + 8 + 8)/4 = 23/4 = 6
At the next round, 

 

p

 

3

 

 reports 

 

C

 

3

 

 = 15 to 

 

p

 

2

 

 and 

 

C

 

3

 

 = 0 to 

 

p

 

0

 

 and 

 

p

 

1

 

.
•

 

C

 

0

 

 = (4 + 4 + 6 + 0)/4 = 14/4 = 4
•

 

C

 

1

 

 = (4 + 4 + 6 + 0)/4 = 14/4 = 4
•

 

C

 

2

 

 = (4 + 4 + 6 + 15)/4 = 29/4 = 7
By continuing in this fashion, 

 

p

 

3

 

 can prevent the value of the clocks of the non-faulty processors from converging.



 
Fault-Tolerant Clock Synchronization ECS 251 – Winter 2001 Page 4

Last modified at 3:14 pm on Thursday, February 15, 2001

 

Interactive Consistency Protocol

 

This assumes that no two non-faulty clocks differ by more than 

 

δ

 

. All processes execute this protocol simultaneously.

1.

 

p

 

i

 

 obtains the value of the other processes’ clocks (for example, by using the OM(

 

m

 

) protocol). Call these values  

 

v

 

1

 

, …, 

 

v

 

n

 

.
2. Set 

 

pi’s clock to the median of v1, …, vn.

Example

Suppose p0, p1, p2, and p3 wish to synchronize their clocks. Take δ = 10, C0 = 2, C1 = 5,C2 = 8, and C3 = 10. Then:
after this protocol is used, all the clocks are set to median(2,5, 8, 10) = (5 + 8)/2 = 6.
Now suppose p3’s clock is faulty and drifts to C3 = 25. Then:
• C0 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C1 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C2 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
Now assume C3 is a two-faced clock. Begin with the same values as above, except that p3 reports C3 = 1 to p1 and    
C3 = 25 to p0 and p2. All apply an agreement protocol:
p3 invokes OM(1)

p3 sends 1 to p1 and 25 to p0 and p2.
p0 receives 25 from p3 and invokes OM(0).

p0 sends 25 to p1 and p2.
p1 receives value 25.
p2 receives value 25.

p1 receives 1 from p3 and invokes OM(0).
p1 sends 1 to p0 and p2.
p0 receives value 1.
p2 receives value 1.

p2 receives 25 from p3 and invokes OM(0).
p2 sends 25 to p0 and p1.
p0 receives value 25.
p1 receives value 25.

p0 computes majority (25, 1, 25) and takes the value at the source to be 25.
p1 computes majority (25, 1, 25) and takes the value at the source to be 25.
p2 computes majority (25, 1, 25) and takes the value at the source to be 25.

• C0 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C1 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
• C2 = median(2, 5, 8, 25) = (5 + 8)/2 = 6
Notice thatall arrive at the same value.


