

Outline for February 20, 2001 ECS 251 – Winter 2001 Page 1

Last modified at 6:37 am on Tuesday, February 27, 2001

Outline for February 20, 2001

1. Greetings and felicitations!
a. Tuesday, Feb 20 3-4:30: Friday Feb 23 1:10-2:30; go to 1101 Hart Hall to view

2. Writing Policy
a. Write-through: client writes to file, server immediately updates file written
b. Delayed write at server: client writes to file, server may hold before updating file; idea is that data may not

need to be written at all because client may delete it; problem is crashes loose that data
c. Delayed write at client: writes sit at client until file is closed, then are flushed to server. Idea is that files are

open for a very short time, so this cuts burden on servers
3. Cache consistency

a. server-initiated: servers inform cache managers when data no longer valid
b. client-initiated: client cache managers check validity of data before returning it to callers
c. disallow caching when concurrent-write sharing: file open at multiple clients, and at least one for writing

(either server tracks who has file open and how, or lock it)
d. problem: sequential-write sharing: recently updated file (by one client) is opened for writing by a second cli-

ent. Second may have outdated blocks in cache (cache timestamps, and compare with real timestamps); first
client may not have flushed cached changes yet (server requires clients to flush cache when another client
opens file)

4. Availability via replication
a. Replicate files

i. Can do only those that must be highly available
ii. Some attribute data (

e.g.

, protection rights) stored with each replica
iii. May not reside on same server as containing directory

b. Replicate volumes (file systems)
i. Easier to manage (

e.g.

, protection rights associated with volume)
ii. Need to replicate volume if

any

 file on it requires high availability
c. Replicate filegroups (primary pack; replica called a pack)

i. Contains subset of files in primary pack
d. Management: consistency among replicas

i. Weighted voting scheme
ii. Agent processes (Locus’ current storage site enforces the global synchronization policy)

5. Example: NFS
a. Architecture: built on RPC and using a virtual file interface à la UNIX (

vnodes

)
b. Naming: all workstations are (conceptually) clients and servers; in practise, have a few systems designated

as file servers (BFS downstairs); discuss file handles; it’s stateless
c. Lack of State: simplifies crash recovery. Handle contains all the info identifying the file, and client kernel

tracks file offsets, etc. If client hears nothing, just resend
i. Server crashes: just restart
ii. Messages bigger than stateful server would require, but would also require restoring lots of info!

d. Caching: client caches:
i. File blocks (on demand, usually 8Kb blocks) as is timestamp of last mod on server. Timeout after some

period of time, then must revalidate
ii. Directory name lookups; flushed when lookup fails and/or new vnode info obtained
iii. File attributes:90% of all NFS requests to server; discarded after 3 sec (files), 30 sec (directories)

6. Example: Sprite
a. Architecture: uses a virtual file interface, built on multiple servers
b. Naming: global tree hierarchy; each subtree is a

domain

 and multiple domains may reside on one server;
prefix table maps file prefixes to servers (each entry has full name of mount point, server name, and domain
name); to locate, refer to prefix table and find longest matching prefix, then go there n(if no entry, broadcast
for it); server sends a file token for the file, and this used to reference file. Remote links return contained file
names and client iterates.

c. Caching: in main memory

Outline for February 20, 2001 ECS 251 – Winter 2001 Page 2

Last modified at 6:37 am on Tuesday, February 27, 2001

i. File blocks: addressed by file token and block number. Query is to cache, then local (if there) or remote;
if remote, to cache, then to file

ii. Delayed writing policy: every 5 sec, cached blocks not modified in last 30 sec are written back to server
iii. Replacement policy: LRU
iv. Consistency: server-initiated approach; files open for both reading and writing are not cached and when

opened for such, cached blocks are written back before open finished
7. Example: Coda (descendant of AFS)

a. Architecture: highly scalable so clients take much of load through caching; local client’s disk treated entirely
as a cache and clients can operate when disconnected

b. Naming: uses volumes; each file, directory has a 92-bit File ID (32 bit volume number, 32 bit vnode number,
32 bit unique identifier). Replication preserves FIDs. Servers have volume location databases. name compo-
nents mapped to FIDs and this info cached at client.

c. Caching: on volume creation, number and location of volume replicas is set (called a volume replication
database; set of servers called a volume storage group; set of servers accessible to a client for every cached
volume is called accesible volume storage group and is kept track of by client cache manager, called Venus)
i. On demand caching, files cached in their entirety on client
ii. Obtained from a preferred server (one of the AVSG); if contacted one is not newest copy, because some

other member has a newer one, that server becomes preferred server and previous preferred server noti-
fied it has stale data

iii. Callbacks: set at preferred server, agreement to notify client if file becomes stale; then client invalidates
cached file, may get new copy

iv. On modification, file sent back to all members of AVSG in parallel (via hardware multicast)
8. Security

a. Goals: confidentiality, integrity, availability
b. Basic Outline: Foundations, Policies, Mechanisms, Assurance, Human and Operational Issues
c. Relationship of policy and mechanism and assurance
d. Foundations: ACM model, HRU result
e. Policies: BLP (confidentiality), Clark-Wilson (integrity), Chinese Wall (both)
f. Mechanism: cryptography

9. Cryptography
a. basics (cryptosystems, attacks, codes vs. ciphers, superencryption)
b. substitution ciphers (Cæsar cipher, Vigenère cipher)
c. transposition ciphers (rail-fence cipher)
d. product cipher (DES)
e. public key crypto (RSA, DH)
f. cryptographic checksums
g. key management (Kerberos, PKI)
h. digital signatures
i. authentication
j. Examples: PEM, PGP, IPSec

Static Voting Protocol ECS 251 – Winter 2001 Page 3

Last modified at 6:37 am on Tuesday, February 27, 2001

Static Voting Protocol

Introduction

This is the weighted voting protocol used to ensure mutual consistency among replicas. The rules allow multiple
readers and no writers, or one writer and no readers.

Notation

•

n

 sites

•

S

i

 site;

L

i

 corresponding lock manager (usually a process on the same site); when

L

i

 grants a LOCK_REQUEST
for a file, it locks the file locally.

•

N

i

 version number of replica at site

S

i

•

V

i

 number of votes assigned to replica at site

S

i

•

r

 read quorum; a read is allowed if

r

 read votes are accumulated

•

w

 write quorum; a write is allowed if

w

 write votes are accumulated

•

v

 votes total

Voting Algorithm

In what follows, we require that

r

 +

 w

 >

v

 and 2

w

 >

v

.

1.

S

i

 issues a LOCK_REQUEST to

L

i

2. When LOCK_REQUEST granted,

S

i

 sends a VOTE_REQUEST message to all other processes
3. When

S

j

 receives a VOTE_REQUEST message:
a.

S

j

 issues a LOCK_REQUEST to

L

j

.
b. If LOCK_REQUEST granted,

S

j

 returns

N

j

 and

V

j

 to

S

i

4.

S

i

 waits for some timeout period, then determines if it has a quorum. Let

P

 be the set of sites from which replies
have been received and let

Q

 = {

s

∈

P

 |

N

j

 = { max {

N

k

 |

k

∈

P

 } }
a. For a read request, if

V

r

 =

∑

s

∈

P

V

s

≥

r

, then

S

i

 has a read quorum
b. For a write request, if

V

w

 =

∑

s

∈

Q

V

s

≥

w

, then

S

i

 has a write quorum.
5. If

S

i

 does not obtain the desired quorum, it issues a RELEASE_LOCK to

L

i

 and all

L

s

 from which it has received
votes (that is, all

L

s

 with

s

∈

P

).
6. If

S

i

 obtains a lock, it checks that its local copy is current (and if not, obtains a current copy).
7. If

S

i

 requested a read:
a. The local copy is read.
b.

S

i

 issues a RELEASE_LOCK to

L

i

 and all

L

s

 from which it has received votes (that is, all

L

s

 with

s

∈

P

).
8. If

S

i

 requested a write:
a. The local copy is written.
b.

S

i

 updates

N

i

c.

S

i

 sends all the updates and

N

i

 to all sites in

Q

d.

S

i

 issues a RELEASE_LOCK to

L

i

 and all

L

s

 from which it has received votes (that is, all

L

s

 with

s

∈

P

).
9. If

S

i

 receives an update, it performs the update on its local copy.
10. If

L

i

 receives a RELEASE_LOCK, it releases the local lock.

Guarantees

• None of the obsolete copies are updated due to a write quorum (see 6).
• There is a subset of replicas that are current and whose votes total to

w

 (see 7).
• There is a non-null intersection between every read quorum and every write quorum (from the relationship

Static Voting Protocol ECS 251 – Winter 2001 Page 4

Last modified at 6:37 am on Tuesday, February 27, 2001

among

r

,

w

, and

v

).
• The write quorum

w is high enough to disallow simultaneous writes on two distinct subsets of replicas (see the
relationship among r, w, and v).

Example

There are four sites. S1, S2, and S4 have 1 vote, and S3 has 2 votes. S1 wants to read a file. For this file, N1 = 1, N2 = 2,
and N3 = N4 = 3. Assume r = 3 and w = 3; then 3 + 3 > 5 and 2 × 3 > 5.
S1 issues LOCK_REQUEST to L1

L1 grants LOCK_REQUEST
S1 broadcasts VOTE_REQUEST to S2, S3, S4

S2 receives VOTE_REQUEST, issues LOCK_REQUEST to L2

L2 grants LOCK_REQUEST, so S2 returns N2 = 2 and V2 = 1 to S1

S3 receives VOTE_REQUEST, issues LOCK_REQUEST to L3

L3 grants LOCK_REQUEST, so S3 returns N3 = 3 and V3 = 2 to S1

S4 receives VOTE_REQUEST, issues LOCK_REQUEST to L4

L4 grants LOCK_REQUEST, so S4 returns N4 = 3 and V4 = 1 to S1

After timeout, S1 computes V1 + V2 + V3 + V4 = 1 + 1 + 2 + 1 ≥ 3 = r, so S1 has a read quorum. It checks that its copy
is current; it sees it is not as N1 < N3, and obtains a current copy from S3. It sets N1 to 3.

S1 reads the local copy
S1 sends RELEASE_LOCK to L1, L2, L3, and L4

Now suppose S1 wants to write. The protocol above is the same until the timeout. Then:
After timeout, S1 computes V1 + V2 + V3 + V4 = 1 + 1 + 2 + 1 ≥ 3 = w, so S1 has a write quorum. It checks that its copy

is current; it sees it is not as N1 < N3, and obtains a current copy from S3.
S1 writes the local copy
S1 sets N1 to 4
S1 sends the updates and N1 = 4 to S2, S3, and S4

S1 sends RELEASE_LOCK to L1, L2, L3, and L4

Now let r = 2 and w = 4. Suppose S1 wants to read but S2 and S3 do not respond. Then:
After timeout, S1 computes V1 + V4 = 1 + 1 ≥ 2 = r, so S1 has a read quorum. It checks that its copy is current; it is not,

as N1 < N4, and obtains a current copy from S4.
S1 reads the local copy
S1 sends RELEASE_LOCK to L1 and L4

Now suppose S2 wants to read, but S1 and S4 do not respond. Then:
After timeout, S2 computes V2 + V3 = 1 + 2 ≥ 2 = r, so S2 has a read quorum. It checks that its copy is current; it is not,

as N1 < N3, and obtains a current copy from S3.
S1 reads the local copy
S1 sends RELEASE_LOCK to L1 and L3

Suppose S1 wants to write but S3 does not respond. Then:
After timeout, S1 computes V1 + V2 + V4 = 1 + 1 + 1 < 4 = w, so S1 does not have a write quorum.
S1 sends RELEASE_LOCK to L1, L2, and L4

