

Answers to Homework #1 ECS 251 – Winter 2001 Page 1

Last modified at 9:27 am on Tuesday, March 13, 2001

Answers to Homework #1

Due Date

: January 16, 2000

Points

: 60

1. (

20 points

) In the example of virtual machines, with a compiler above an operating system above two levels of
virtualizing kernel, how many privileged instructions would be executed at each level if the instruction executed
by the compiler can be emulated without use of privileged instructions by the operating system?

Answer:

The critical observation is that even if the layer needs no privileged instruction to emulate an instruction
in the next upper layer, it needs to return control to that layer, and this returning is a privileged instruction.

Given that, the following diagram summarizes what happens:

When the compiler tries to execute an instruction, it traps; this trap is acted upon by the lower virtual kernel
(1). It determines that the instruction was not privileged, and returns control to the upper virtual kernel (2). That
also determines the instruction is not privileged and tries to return control to the operating system; that being a
privileged instruction, it traps to the lower virtual kernel (3). The lower virtual kernel updates the upper virtual
kernel to make it appear that that layer successfully executed the privileged instruction, and then returns control
to that layer. In doing so, control actually passes to the next upper layer, which is the operating system (4). This
determines the instruction is to be emulated, and does so. No privileged instructions are involved. It then tries to
return control to the compiler, and in doing so executes a privileged instruction.

The operating system therefore causes a trap to the lowermost virtual kernel (5), which determines that the
instruction was privileged; then the lower virtual kernel updates the upper virtual kernel to make it appear that
that layer successfully trapped the privileged instruction (that is, the operating system trapped to the upper, rather
than the lower, virtual kernel), and then returns control to that layer (6). That layer determines that the operating
system tried to return control to the compiler, and updates the operating system to make it appear that the operat-
ing system had done so. It then tries to return control to the operating system (and hence to the compiler); but
this traps to the lower virtual kernel, as the instruction is privileged (7). The lower virtual kernel updates the
upper virtual kernel to make it appear that that program had correctly executed the privileged instruction; it then
returns control to the upper virtual kernel, which has caused control to be passed to the operating system, which
has caused control to be passed to the compiler (8).

That means the lower virtual kernel executes 4 “return control” instructions, the upper virtual kernel 2, and
the operating system 1. (In the diagram, each line following a short straight line represents an attempt to execute
a privileged call.)

2. (

20 points

) Is the following program properly nested? Please either show that it is by rewriting the program using

parbegin

 …

parend

, or prove that it is not properly nested. (The S

i

 are statements.)

c4 := 2;
c6 := 2;
S1;
fork p1;
S3;
fork p2;
S5;
goto p4;

p1: S2;
goto p2;

p2: join c4, p3;

compiler

operating
system

virtualizing
kernel

virtualizing
kernel

1

2

3

4

5

6

7

8

Answers to Homework #1 ECS 251 – Winter 2001 Page 2

Last modified at 9:27 am on Tuesday, March 13, 2001

quit
p3: S4;
p4: join c6, p5;

quit
p5: S6

quit

Answer:

The precedence graph is the following:

For the precedence graph to be properly nested, it must have a sequential or parallel “innermost block”. If it
has a sequential innermost block, there will be some subgraph with an edge connecting two vertices. The source
vertex will have one outgoing edge, and the destination vertex will have one incoming edge. No such subgraph of
the above precedence graph exists. If the graph has a parallel innermost block, there will be some subgraph like:

In this subgraph, the vertices corresponding to B and C must have exactly one incoming edge (from the same
source) and one outgoing edge (to the same destination). Checking the above precedence graph, we see there is
no subgraph with this format. Hence the subgraph is that of a program that is not properly nested. Thus the origi-
nal program is not properly nested and so cannot be written using

parbegin

 …

parend

.

3. (

20 points

) Synchronization within monitors uses condition variables and two special operators,

wait

 and

signal

.
A more general form of synchronization would be to have a single primitive,

waituntil

, that had an arbitrary
Boolean predicate as parameter. Thus, one could say, for example,

waituntil

x

 < 0

or

y

 +

z

 <

n

The

signal

 primitive would no longer be needed.

a. Use this more general form to solve the producer-consumer problem.
b. Is this construct more, less, or as, powerful as using

wait

 and

signal

 (in Hoare’s version of monitors)?
c. Why do you think it is not used in practice?

Answer:

a. This solution is based on the monitor solution given in class.

1

buffer

: monitor

;
2

var

slots

:

array

[0..

n

-1]

of

 item;
3

count

,

in

,

out

: integer;
4

procedure

entry

deposit

(

data

: item);
5

begin

6

waituntil

count

 <>

n

;
7

slots

[

in

] :=

data

;
8

in

 :=

in

 + 1

mod

n

;
9

count

 :=

count

 + 1;

S1

S2

S3

S5

S4

S6

A

D

B C

Answers to Homework #1 ECS 251 – Winter 2001 Page 3

Last modified at 9:27 am on Tuesday, March 13, 2001

10

end

;
11

procedure

entry extract(var data: item);
12 begin
13 waituntil count <> 0;
14 data := slots[out];
15 out := out + 1 mod n;
16 count := count – 1;
17 end;
18 begin
19 count := 0; in := 0; out := 0;
20 end.

The idea is the same; the only difference is that the monitor checks whether the buffer is full in deposit (line
6), or empty in extract (line 13), by looking at the value of the count variable directly instead of waiting for
signals to indicate that the appropriate condition is satisfied.

b. We need to show that we can implement the wait and signal primitives using waituntil. For each condition
variable x, we make two new variables local to the monitor.

var x_waiting: integer, x_signaled: boolean;
They are initialized as follows.

x_waiting := 0;
x_signaled := false;

Each occurrence of x.wait is replaced with
x_waiting := x_waiting + 1;
waituntil x_signaled;
x_signaled := false;

Each occurrence of x.signal is replaced with
if x_waiting > 0 then begin

x_waiting := x_waiting - 1;
x_signaled := true;

end;
Thus, waituntil is at least as general as Hoare's scheme.
Conversely, we can implement waituntil using wait and signal as follows: for each statement of the form

waituntil expr
where expr is a boolean expression of variables x1, x2, ..., xn, we make a new condition variable x. We
replace the waituntil statement with

if not expr then x.wait;
After every statement in the monitor that assigns one of the variables x1, x2, ..., xn, we insert

if expr then x.signal;
Thus, waituntil is equivalent to Hoare's scheme, not more general, since each can be expressed in terms of
the other.

c. The implementation of waituntil in terms of wait and signal given in part (b) shows what the problem is.
There could be a tremendous amount of time spent in rechecking the boolean expression after every assign-
ment statement that could affect its value. Thus, waituntil is far less efficient than Hoare's scheme.

