
 
Answers to Homework #3 ECS 251 – Winter 2001 Page 1

Last modified at 4:45 pm on Monday, March 19, 2001

 

Answers to Homework #3

 

Due Date

 

: February 27, 2001

 

Points

 

: 70

1. (

 

20 points

 

) Show that in Lamport’s algorithm the critical section is accessed according to the increasing order of 
timestamps. (text, problem 6.7, p. 149)

 

Answer: 

 

Recall that two basic assumptions of Lamport’s algorithm (or any other distributed mutual exclusion 
algorithm, for that matter) is that messages sent from process 

 

p

 

 to process 

 

q

 

 arrive in the order they are sent, and 
if a message is sent then it will arrive (

 

i.e.

 

, no messages are lost).
Proof by contradiction. Suppose process 

 

p

 

1

 

 issues a request to enter the critical section at time 

 

t

 

1

 

, 

 

p

 

2

 

 issues a 
similar request at time 

 

t

 

2

 

 with 

 

t

 

1

 

 < 

 

t

 

2

 

, and 

 

p

 

2

 

 enters first. This means that 

 

p

 

2

 

’s request is at the head of its queue. 
As the queues are ordered by timestamp, this means 

 

p

 

1

 

’s request has not arrived. If 

 

p

 

2

 

 enters, though, it also 
received a message from 

 

p

 

1

 

 with a timestamp higher than 

 

t

 

2

 

. This implies that 

 

p

 

1

 

’s request has a timestamp 
higher than 

 

t

 

2

 

 (which is false as 

 

t

 

1

 

 < 

 

t

 

2

 

) or 

 

p

 

2

 

 never received 

 

p

 

1

 

’s request. The latter is possible only if either 

 

p

 

1

 

’s 
request was lost, or messages from 

 

p

 

1

 

 to 

 

p

 

2

 

 arrive out of order. Both these contradict the above basic assump-
tions. Hence 

 

p

 

2

 

 cannot enter the critical section first, proving the claim.

2. (

 

20 points

 

) Show that in the Ricart-Agrawala algorithm, the critical section is accessed according to the increas-
ing order of timestamps. (text, problem 6.5, part 1, p. 149)

 

Answer: 

 

Proof by contradiction. Suppose process 

 

p

 

1

 

 issues a request to enter the critical section at time 

 

t

 

1

 

, 

 

p

 

2

 

 
issues a similar request at time 

 

t

 

2

 

 with 

 

t

 

1

 

 < 

 

t

 

2

 

, and 

 

p

 

2

 

 enters first. This means that 

 

p

 

2

 

 has received reply messages 
from all other processes including 

 

p

 

1

 

. But 

 

p

 

1

 

 will send such a message only if it is neither requesting nor execut-
ing the critical section (which is false) or if 

 

p

 

2

 

’s request’s timestamp is smaller than that of 

 

p

 

1

 

’s request (which is 
also false). Hence 

 

p

 

1

 

 will not send a reply to 

 

p

 

2

 

’s request, and so 

 

p

 

2

 

 cannot enter the critical section first. This 
contradicts hypothesis, proving the claim.

3. (

 

30 points

 

) On p. 145, the text discusses the greedy strategy for Raymond’s tree-based algorithm, and notes that 
it can cause starvation. Please give an example of the application of this algorithm to a situation in which the 
greedy strategy causes starvation, but the regular algorithm does not.

 

Answer: 

 

There are two answers to this question, depending on how one views “site.”
If there are multiple processes at each site, the processes can genetate a stream of requests to enter the criti-

cal section. As the greedy nature of the algorithm requires the site to honor requests generated at that site first, the 
token stays at the site and any other site with a request to enter the critical section starves.

If there is a single process at each site, starvation will not occur. Observe that, after the process finishes exe-
cuing in the critical section, the token will be forwarded as indicated by the 

 

holdier

 

 variable. Given this observa-
tion, the proof showing no starvation in both the greedy and non-greedy cases are the same.

 

Extra Credit

 

4. (

 

30 points

 

) Does Maekawa’s algorithm access the critical section according to the increasing order of times-
tamps? Either show that it does or provide a counterexample. (text, problem 6.5, part 2, p. 149)

 

Answer: 

 

The claim is false. Consider the following situation, with three sites:

 

R

 

1

 

 = { 

 

S

 

1

 

, 

 

S

 

2

 

 }

 

R

 

2

 

 = { 

 

S

 

2

 

, 

 

S

 

3

 

 }

 

R

 

3

 

 = { 

 

S

 

1

 

, 

 

S

 

3

 

 }
These satisfy the conditions for Maekawa’s algorithm.

Let the clocks at sites 1, 2, and 3 be 

 

C

 

1

 

 = 10, 

 

C

 

2

 

 = 20, and 

 

C

 

3

 

 = 30, respectively. Then:

 

S

 

2

 

 sends REQUEST(2, 20) to 

 

S

 

2

 

 and 

 

S

 

3

 

S

 

2

 

 receives REQUEST(2,20) from 

 

S

 

2

 

S

 

2 

 

sends REPLY(2, 21) to 

 

S

 

2

 

S

 

2

 

 receives REPLY(2, 21) from 

 

S

 

2

 

S

 

3

 

 sends REQUEST(3, 30) to 

 

S

 

1

 

 and 

 

S

 

3

 

S

 

3

 

 receives REQUEST(3,30) from 

 

S

 

3

 

S

 

3

 

 sends REPLY(3, 31) to 

 

S

 

3



 
Answers to Homework #3 ECS 251 – Winter 2001 Page 2

Last modified at 4:45 pm on Monday, March 19, 2001

 

S

 

3

 

 receives REPLY(3, 31) from 

 

S

 

3

 

S

 

1

 

 receives REQUEST(3, 30) from 

 

S

 

3

 

S

 

1

 

 sends REPLY(1, 31) to S3

S3 receives REPLY(1, 31) from S1

At this point, S3 enters the critical section even though its request has a timestamp greater than that of S2.
This works because Maekawa’s algorithm sends a REPLY to the first message that a process receives. If a 

later request comes with a lower timestamp, either a FAILED message is sent or the REPLY is held.


